Tripling the displacement from equilibrium of an object in simple harmonic motion will bring about a change in the magnitude of the object's acceleration by what factor?

Answers

Answer 1
Answer:

Answer:

acceleration will be tripled.

Explanation:

We know, when an object is performing Simple harmonic motion, the force

experience by it is directly proportional to its displacement from its mean position.

Also, F = ma , therefore, acceleration is also proportional to its displacement .

Now, F = kx

Therefore, a=(k\ x)/(m)

If we triple the displacement i.e, 3x.

Acceleration a'=(k(3x))/(m)=3a.

Therefore, acceleration is also tripled.

Hence, this is the required solution.


Related Questions

What minimum value of the coefficient of static friction between the ground and the cheetah's feet is necessary to provide this acceleration
A 372-g mass is attached to a spring and undergoes simple harmonic motion. Its maximum acceleration is 17.6 m/s2 , and its maximum speed is 1.75 m/s. a)Determine the angular frequency. b)Determine the amplitude. c)Determine the spring constant.
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 35 m in 3.5 min, starting and ending at rest. The elevator's counterweight has a mass of only 940 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable
an ice skater, standing at rest, uses her hands to push off against a wall. she exerts an average force on the wall of 120 N and the push lasts 0.8 seconds. The skater's mass is 55 kg. what is the skater's speed after she stops pushing on the wall
Why a switch is connected in phase wire and never is neutral wire?​

7) Straws work on the principle of the outside atmospheric pressure pushing the fluid (for example water) up the straw after you have lowered the pressure at the top of the straw (in your mouth). Assuming you could create a perfect vacuum in your mouth, what is the longest vertical straw you could drink water from?

Answers

Answer:

The longest straw will be 10.328 meters long.

Explanation:

The water will rise up to a height pressure due to which will balance the atmospheric pressure.

We know

P_(atm)=101325N/m^(2)

Pressure due to water column of height 'h'

P_(water)=1000* 9.81* h

Equating both the values we get the value of height 'h' as

h=(101325)/(1000* 9.81)\n\nh=10.328m

What is the volume of a cone with a radius of 3 feet and a height of 6 feet use 3.14 for pie round your answer to the nearest hundredth

Answers

Answer:

56.52 feet³ to the nearest hundredth

Explanation:

the volume of a cone is given as

V =

(1)/(3) \pi r^(2) h

the radius is 3 feet

height is 6 feet

substituting this given values in the formular

we have that, V = (1)/(3) x 3.14 x 3^(2) x 6

dividing , we have the volume (V)

V= 3.14 x 3 x 6

= 3.14 x 18

= 56.52 feet³ to the nearest hundredth

A capacitor consists of two closely spaced metal conductors of large area, separated by a thin insulating foil. It has an electrical capacity of 3000.0 μF and is charged to a potential difference of 60.0 V. Calculate the amount of energy stored in the capacitor. Tries 0/20 Calculate the charge on this capacitor when the electrical energy stored in the capacitor is 6.53 J. Tries 0/20 If the two plates of the capacitor have their separation increased by a factor of 5 while the charge on the plates remains constant, by what factor is the energy stored in the capacitor increased?

Answers

Answer:

1 = 5.4 J

2 = 0.1979 C

3 = 5

Explanation:

Energy in a capacitor, E is

E = 1/2 * C * V²

E = 1/2 * 3000*10^-6 * 60²

E = 1/2 * 3000*10^-6 * 3600

E = 1/2 * 10.8

E = 5.4 J

E = Q²/2C = 6.53 J

E * 2C = Q²

Q² = 6.53 * 2 * 3000*10^-6

Q² = 13.06 * 3000*10^-6

Q² = 0.03918

Q = √0.03918

Q = 0.1979 C

The Capacitor, C is inversely proportional to the distance of separation, D. Thus, if D is increased by 5 to be 5D, then C would be C/5. And therefore, our energy stored in the capacitor is increased by a factor of 5.

A block of mass 0.221 kg is placed on top of a light, vertical spring of force constant 5365 N/m and pushed downward so that the spring is compressed by 0.097 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?

Answers

Answer:

The maximum height above the point of release is 11.653 m.

Explanation:

Given that,

Mass of block = 0.221 kg

Spring constant k = 5365 N/m

Distance x = 0.097 m

We need to calculate the height

Using stored energy in spring

U=(1)/(2)kx^2...(I)

Using gravitational potential energy

U' =mgh....(II)

Using energy of conservation

E_(i)=E_(f)

U_(i)+U'_(i)=U_(f)+U'_(f)

(1)/(2)kx^2+0=0+mgh

h=(kx^2)/(2mg)

Where, k = spring constant

m = mass of the block

x = distance

g = acceleration due to gravity

Put the value in the equation

h=(5365*(0.097)^2)/(2*0.221*9.8)

h=11.653\ m

Hence, The maximum height above the point of release is 11.653 m.

Sharece knows that wave peaks and valleys can add and subtract. What would be the net effect if she was able to cross Wave 1 (a large-amplitude wave in a valley phase) with Wave 2 (a wave with slightly smaller amplitude than Wave 2, in a peak phase)?Sharece knows that wave peaks and valleys can add and subtract. What would be the net effect if she was able to cross Wave 1 (a large-amplitude wave in a valley phase) with Wave 2 (a wave with slightly smaller amplitude than Wave 2, in a peak phase)?

Answers

Answer:

The two waves will add vectorially to produce a small amplitude wave in a valley phase.

Explanation:

The two waves will add vectorially to produce a small amplitude wave in a valley phase. This is because the amplitudes of the waves are slightly different and in opposite directions. When wave 1 cancels out all of wave 2, the resultant wave would be the slight difference between both waves, and it would be in the direction of wave 1 which is a valley phase.

Why might a scientist want to use a model to study the solar system? O A. Its extreme simplicity makes it difficult to see patterns in observations. B. Its extremely slow movement makes it difficult to see the motions of different planets. C. Its extremely large size makes it difficult to see all of its parts at the same time. D. Its extremely small size makes it difficult to see planets that are far away​

Answers

A scientist wants to use a model to study the solar model because its extremely large size makes it difficult to see all of its parts at the same time. Hence, option C is correct.

What is a Solar System?

The Sun and all the smaller movable objects that orbit it make up the Solar System. The eight main planets are the largest objects in the Solar System, excluding the Sun. Mercury, Venus, Earth, and Mars are the four relatively tiny, rocky planets closest to the Sun.

The asteroid belt, which is home to millions of stony objects, lies beyond Mars. These are remains from the planets' creation 4.5 billion years ago.

Jupiter, Saturn, Uranus, and Neptune are the four gas giants that can be found on the opposite side of the asteroid belt. Despite being much larger than Earth, these planets are rather light. Their main components are hydrogen and helium.

To get more information about Solar systems:

brainly.com/question/18365761

#SPJ5