Answer:
Upward
Explanation:
For charged particles immersed in an electric field:
- if the particle is positively charged, the direction of the force is the same as the direction of the electric field
- if the particle is negatively charged, the direction of the force is opposite to the direction of the electric field
In this problem, we have an electron - so a negatively charged particle - so the direction of the force is opposite to that of the electric field.
Since the electric field is directed downward, therefore, the electric force on the electron will be upward.
Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.
Answer: hello your question is incomplete below is the complete question
Water stands at a depth H in a large open tank whose side walls are vertical . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole
answer :
At Height ( h ) from the bottom of Tank
Explanation:
Determine how far above the bottom of the tank a second hole be cut
For the second hole to have the same range as the first hole
Range of first hole = Velocity of efflux of water * time of fall of water
= √ (2gh) * √( 2g (H - h) / g)
= √ ( 4(H-h) h)
Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank
The second hole should be cut at the same height as the first hole to have the same range for the stream.
In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.
#SPJ3
Answer:
Explanation:
A charge within an electric field E experiences a force proportional to the field whose module is F = qE, whose direction is the same, if the charge is negative, it experiences a force in the opposite direction to the field and if the charge is positive, experience a force in the same direction of the field.
In our case we are interested in the magnitude of the force, therefore the sign of the charge has no relevance
Answer:
Explanation:
Let assume that one end of the spring is attached to the ground. The speed of the metal block when hits the relaxed vertical spring is:
The maximum compression of the spring is calculated by using the Principle of Energy Conservation:
After some algebraic handling, a second-order polynomial is formed:
The roots of the polynomial are, respectively:
The first root is the only solution that is physically reasonable. Then, the elongation of the spring is:
The maximum height that the block reaches after rebound is:
Answer:
0.81 m
Explanation:
In all moment, the total energy is constant:
Energy of sistem = kinetics energy + potencial energy = CONSTANT
So, it doesn't matter what happens when the block hit the spring, what matters are the (1) and (2) states:
(1): metal block to 0.8 m above the floor
(2): metal block above the floor, with zero velocity ( how high, is the X)
Then:
Replacing data:
HB2 ≈ 0.81 m