Explanation:
work=force/distance
work=80
force=5
putting value of force and work we get
80=5/distance
5/80=distance
1/16=distance
or
0.0625m
6.25cm
Answer:
The presence of dwarf galaxies around the Milky Way supports what picture that our galaxy was formed by a coming together or combination of smaller systems
B. fresnel
C. far-field
D. single slit
Answer:
Average net force = 0.62 N
Explanation:
We are given;
Mass; m = 1.7 kg
Initial velocity; u = 12.5 m/s
Final velocity; v = 25 m/s
time; t = 25 seconds
Now, we are told that the final velocity was 30° west of North. So, resolving this velocity along the horizontal gives;
v = 25 cos 30°
Now, using Newton's first equation of motion gives;
v = u + at
Where a is acceleration
Plugging in the relevant values gives;
25 cos 30° = 12.5 + 25a
21.6506 - 12.5 = 25a
a = (21.6506 - 12.5)/25
a = 0.3660 m/s²
Now, magnitude of the average net force would be; F = ma
F = 1.7 × 0.366
F ≈ 0.62 N
Answer:
Energy dissipated = 13.453 Joules
Explanation:
In order to solve this problem, we first compute the gravitational potential energy the child has, and then find the kinetic energy at the lowest position.
The gravitational potential energy (relative to lowest position) is found as follows:
G.P.E = mass * gravity * height
Where, Height = 2 - 2 * Cos(34°)
Height = 0.3193 meters
G.P.E = 30 * 9.8 * 0.3193
G.P.E = 93.874 J
Kinetic energy:
K.E = 0.5 * mass * velocity^2
K.E = 0.5 * 30 * 2.31547^2
K.E = 80.421 J
Energy dissipated = G.P.E - K.E
Energy dissipated = 93.874 - 80.421
Energy dissipated = 13.453 J
the internal energy of the cube increases by 47000 cal its temperature
increases by:
A
B
C
D
E
5 °C
10 °C
20 °C
100 °C
200 °C
The change in temperature of this cube of aluminum is equal to: B. 10°C
Given the following data:
To find the change in temperature of this cube of aluminum:
First of all, we would determine the volume of this cube of aluminum.
Next, we calculate the mass of this cube of aluminum:
Mass = 21,600 grams.
Now, we can find the change in temperature of this cube of aluminum:
Mathematically, the quantity of heat energy is given by the formula;
Where:
Substituting the parameters into the formula, we have;
Change in temperature = 10°C
Read more: brainly.com/question/18877825
Answer:
10 °C
Explanation:
From the question given above, the following data were obtained:
Egde length (L) of aluminum = 20 cm
Density of Aluminum = 2.7 g/cm³
Specific heat capacity (C) of aluminum = 0.217 cal/ g°С
Heat (Q) energy = 47000 cal
Change in Temperature (ΔT) =?
Next, we shall determine the volume of the aluminum. This can be obtained as follow:
Egde length (L) of aluminum = 20 cm
Volume (V) of aluminum =?
V = L³
V = 20³
V = 8000 cm³
Thus, the volume of the aluminum is 8000 cm³
Next, we shall determine the mass of the aluminum. This can be obtained as follow:
Density of Aluminum = 2.7 g/cm³
Volume of Aluminum = 8000 cm³
Mass of aluminum =.?
Density = mass/volume
2.7 = mass /8000
Cross multiply
Mass of aluminum = 2.7 × 8000
Mass of Aluminum = 21600 g
Finally, we shall determine the change in temperature of the aluminum as follow:
Specific heat capacity (C) of aluminum = 0.217 Cal/g°С
Heat (Q) energy = 47000 Cal
Mass (M) of Aluminum = 21600 g
Change in Temperature (ΔT) =?
Q = MCΔT
47000 = 21600 × 0.217 × ΔT
47000 = 4687.2 × ΔT
Divide both side by 4687.2
ΔT = 47000 / 4687.2
ΔT = 10 °C
Therefore, the increase in the temperature of the aluminum is 10 °C.
Answer: wavelength =3.52m
Explanation:
,λ=c/μ
where c=speed of the light,λ=wave length, μ=frequncy
c=3x10^8m/s
And
μ=83.5/MHz =85.3x10^6Hz==85.3x10^6Hz=
=85.3x10^6s-1
λ=c/μ
=3x10^8m/s/85.3x10^6s-1
=3.51699883
=3.52m