Ne =[He]2s2 2p6
Ar = [Ne]3s2 3p6
Kr = [Ar]4s2 3d10 4p6
As it can be seen that for all three elements, their outermost orbital are completely filled, that is it has both s orbital, p orbital and d orbital fulfilled. Noble or inert gas atoms like Neon, Argon, Krypton have fulfilled valence shell. Fulfilled outermost orbital is the most stable electronic state, hence all elements tends to achieve such stability. These noble gas elements are called inert gas because of their fulfilled outermost shell. This means they don't react easily or take part in eletron donating, receiving or sharing. This is because, for all other elements except inert gas atoms, their valence shell is incomplete and they tend to react by other atoms so as to complete their outermost shell , which we call as duplet (in case of Helium like) or Octet state. Such elements either donate some electrons or receive some to acheive such stable state..
Answer:
A. The resultant force in the same direction as the satellite’s acceleration.
Explanation:
Launching a satellite in the space and then placing it in orbit around the Earth is a complicated process but at the very basic level it works on simple principles. Gravitational force pulls the satellite towards Earth whereas it acceleration pushes it in straight line.
The resultant force of gravity and acceleration makes the satellite remain in orbit around the Earth. It is condition of free fall where the gravity is making the satellite fall towards Earth but the acceleration doesn't allow it and keeps it in orbit.
In a circular orbit around the Earth, the resultant force acting on a satellite is in the same direction as its acceleration.
In a satellite orbiting the Earth in a circular orbit, there are several forces at play. The gravitational force between the satellite and the Earth provides the centripetal force that keeps the satellite in its orbit. The centripetal force acts towards the center of the circular orbit, while the satellite's acceleration is directed towards the center as well. Therefore, option A is correct: the resultant force is in the same direction as the satellite's acceleration.
The gravitational force acting on the satellite is not negligible; in fact, it is crucial in providing the necessary centripetal force. Therefore, option B is incorrect.
Option C is incorrect as well. There is a resultant force acting on the satellite relative to the Earth, which is responsible for keeping the satellite in its circular orbit.
Lastly, option D is also incorrect. According to Newton's third law of motion, the satellite exerts an equal and opposite force on the Earth, keeping the Earth and the satellite in orbit around their common center of mass.
#SPJ11
Answer:
x = 0.68 meters
Explanation:
It is given that,
Mass of the car, m = 1500 kg
Speed of the car, v = 25 m/s
Spring constant of the spring,
When the car hits the uncompressed horizontal ideal spring the kinetic energy of the car is converted to the potential energy of the spring. Let x is the maximum distance compressed by the spring such that,
x = 0.68 meters
So, the spring is compressed by a distance of 0.68 meters. Hence, this is the required solution.
The maximum distance the spring compresses when a 1500 kg car moving at 25 m/s hits it, given a spring constant of 2.0 × 10⁶N/m, is approximately 0.53 meters or 53 centimeters.
In this specific problem, we can apply the conservation of energy principle, where the initial kinetic energy of the car is converted into potential energy stored in the spring when the car comes to a stop. The formula for kinetic energy is K = 1/2 × m× v² and for potential energy stored in a spring is U = 1/2×k × x², where m = mass of the car, v = velocity of the car, k = spring constant, and x = maximum distance the spring is compressed.
By setting the kinetic energy equal to potential energy (since no energy is lost), we get 1/2 × m×v² = 1/2×k×x². Solving this equation for x (maximum compression of the spring), we obtain x = sqrt((m×v²)/k). Substituting the given values, x = sqrt((1500 kg× (25 m/s)²) / (2.0 × 10⁶ N/m)), which yields approximately 0.53 meters or 53 centimeters. Therefore, the maximum distance the spring compresses is 53 cm.
#SPJ3
Answer:
Image is virtual and formed on the same side as the object, 19.29 cm from the lens.
The height of the image is 0.40509 cm
Image is upright as the magnification is positive and smaller than the object.
Explanation:
u = Object distance = 100 cm
v = Image distance
f = Focal length = -23.9 cm (concave lens)
= Object height = 2.1 cm
Lens Equation
Image is virtual and formed on the same side as the object, 19.29 cm from the lens.
Magnification
The height of the image is 0.40509 cm
Image is upright as the magnification is positive and smaller than the object.
Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is
The location of the prob at time t = 22.9 s is
The momentum at time t = 22.9 s is
The net force on the probe is
Generally the change in momentum is mathematically represented as
The initial time is 22.6 s
The final time is 22.9 s
Substituting values
O A. 6,658 ft
OB. 25,396 ft
OC. 7,282 ft
OD. 23,219 ft
Answer:
The width of the slit is 0.167 mm
Explanation:
Wavelength of light,
Distance from screen to slit, D = 88.5 cm = 0.885 m
The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm, y = 1.61 cm = 0.0161 m
We need to find the width of the slit. The formula for the distance on the screen between the fifth order minimum and the central maximum is :
where
a = width of the slit
a = 0.000167 m
a = 0.167 mm
So, the width of the slit is 0.167 mm. Hence, this is the required solution.