Answer:
0.00098 N
Explanation:
The weight of an object is given by:
where
m is the mass of the object
g is the gravitational acceleration on the planet
In this problem, we have:
is the mass of the honeybee
is the acceleration due to gravity
Substituting into the equation, we find:
Answer:
Gravity
Explanation:
Gravity is constantly pulling objects downward. Without it, everything would float out into space.
I hope this answer helps :)
Answer:
The answer for the given question above would be option C. GRAVITATIONAL FORCE. Based on the given scenario above of a leaf that falls to the ground when Tonya let it go, the force that pulled the leaf to the ground is the gravitational force. This kind of force is a force that attracts any object with mass.
Hope this helps!!!
Explanation:
Given data:
Area A = 10 cm×2 cm = 20×10⁻⁴ m²
Distance d between the plates = 1 mm = 1×10⁻³m
Voltage of the battery is emf = 100 V
Resistance = 1025 ohm
Solution:
In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by
Taking natural log on both sides,
(1)
Now we can calculate the capacitance by using the area of the plates.
C = ε₀A/d
=
= 18×10⁻¹²F
Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)
= -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)
= 15×10⁻⁹s
= 15 ns
T =1/f = 1/4.31s = 0.232hz correct?
Answer:correct
Explanation: Period T is the reciprocal of frequency (i.e T=1/f)
Frequency is the reciprocal of period (i.e F= 1/T)
Therefore if T=4.31s
Frequency F= 1/4.31s=0.232hz
Answer:
9 m/s
Explanation:
Wyatt maintains the maximum speed for the rest of the race. This motion begins when his displacement is 40 m and the time is 7 s. At time 12 s, his displacement is 85 m. Because this motion is constant-velocity, the maximum speed is given by
Answer:
The resultant vector is given by .
Explanation:
Let and , both measured in meters. The resultant vector is calculated by sum of components. That is:
(Eq. 1)
The resultant vector is given by .
Answer:
A. The resultant force in the same direction as the satellite’s acceleration.
Explanation:
Launching a satellite in the space and then placing it in orbit around the Earth is a complicated process but at the very basic level it works on simple principles. Gravitational force pulls the satellite towards Earth whereas it acceleration pushes it in straight line.
The resultant force of gravity and acceleration makes the satellite remain in orbit around the Earth. It is condition of free fall where the gravity is making the satellite fall towards Earth but the acceleration doesn't allow it and keeps it in orbit.
In a circular orbit around the Earth, the resultant force acting on a satellite is in the same direction as its acceleration.
In a satellite orbiting the Earth in a circular orbit, there are several forces at play. The gravitational force between the satellite and the Earth provides the centripetal force that keeps the satellite in its orbit. The centripetal force acts towards the center of the circular orbit, while the satellite's acceleration is directed towards the center as well. Therefore, option A is correct: the resultant force is in the same direction as the satellite's acceleration.
The gravitational force acting on the satellite is not negligible; in fact, it is crucial in providing the necessary centripetal force. Therefore, option B is incorrect.
Option C is incorrect as well. There is a resultant force acting on the satellite relative to the Earth, which is responsible for keeping the satellite in its circular orbit.
Lastly, option D is also incorrect. According to Newton's third law of motion, the satellite exerts an equal and opposite force on the Earth, keeping the Earth and the satellite in orbit around their common center of mass.
#SPJ11