Answer:
The man ate eggs.
Explanation:
He should brush his teeth before seeing his girlfriend.
d1=_____m
Part B:
d2=______m
Answer:
Explanation:
In projectile motion , range of projectile is given by the expressions
R = u²sin2θ / g
where u is velocity of projectile.
u = 27 m/s θ = 50
12 = 27² sin 2θ / 9.8
sin 2θ = .16
θ = 9.2 / 2
= 4.6
When we place 90- θ in place of θ , in the formula of range , we get the same value of projectile. hence at 85.4 ° , the range will be same.
Answer:
The distance and height of the object is 6 m and 2 m.
The image is virtual and upright.
Explanation:
Given that,
Focal length = 0.25 m
Length of image = 0.080 m
Image distance = 0.24 m
We need to calculate the distance of the object
Using formula of lens
Put the value into the formula
We need to calculate the magnification
Using formula of magnification
Put the value into the formula
We need to calculate the height of the object
Using formula of magnification
A convex mirror produce a virtual and upright image behind the mirror.
Hence, The distance and height of the object is 6 m and 2 m.
The image is virtual and upright.
Answer:
Distance of the object = 6 m
Height of the object = 2 m
Explanation:
Thinking process:
Given that,
Focal length = 0.25 m
Length of image = 0.080 m
Image distance = 0.24 m
We need to calculate the distance of the object
Therefore, using formula of lens:
solving, gives u = 6
The magnification is calculated as follows:
m = -0.24/-6
= 0.04
The height = 2 m
The diagram yields an image behind the mirror which is upright.
2. What is the angle a of the force F in the figure above?
(a) The magnitude of the force F acting on the knot is 5.54 N.
(b) The angle α of the force F is 54.4⁰.
The given parameters:
The net vertical force on the knot is calculated as follows;
The net horizontal force on the knot is calculated as follows;
From the trig identity;
The angle α of the force F is calculated as follows;
Find the image uploaded for the complete question.
Learn more about net force here:brainly.com/question/12582625
The knot is in equilbrium, so there is no net force acting on it. Starting with the unknown force and going clockwise, denote each force by F₁, F₂, F₃, and F₄, respectively. We have
F₁ + F₂ + F₃ + F₄ = 0
Decomposing each force into horizontal and vertical components, we have
F cos(180º - α) + (5.7 N) cos(50º) + (6.2 N) cos(-44º) + (6.7 N) cos(-137º) = 0
F sin(180º - α) + (5.7 N) sin(50º) + (6.2 N) sin(-44º) + (6.7 N) sin(-137º) = 0
Recall that cos(180º - x) = - cos(x) and sin(180º - x) = sin(x), so these equations reduce to
F cos(α) ≈ - 3.22 N
F sin(α) ≈ 4.51 N
(1) Recall that for all x, sin²(x) + cos²(x) = 1. Use this identity to solve for F :
(F cos(α))² + (F sin(α))² = F ² ≈ 30.73 N² → F ≈ 5.5 N
(2) Use the definition of tangent to solve for α :
tan(α) = sin(α) / cos(α) ≈ 1.399 → α ≈ 126º
or about 54º from the horizontal from above on the left of the knot.
Answer:
a. 409.5 m/s b. f₁ = 136.5 Hz, f₂ = 409.5 Hz, f₃ = 682.5 Hz
Explanation:
a. The speed of sound v in a gas is v = √(B/ρ) where B = bulk modulus and ρ = density. Given that on Venus, B = 1.09 × 10⁷ N/m² and ρ = 65.0 kg/m³
So, v = √(B/ρ)
= √(1.09 × 10⁷ N/m²/65.0 kg/m³)
= √(0.01677 × 10⁷ Nm/kg)
= √(0.1677 × 10⁶ Nm/kg)
= 0.4095 × 10³ m/s
= 409.5 m/s
b. For a pipe open at one end, the frequency f = nv/4L where n = mode of wave = 1,3,5,.., v = speed of wave = 409.5 m/s and L = length of pipe = 75.0 cm = 0.75 m
Now, for the first mode or frequency, n = 1
f₁ = v/4L
= 409.5 m/s ÷ (4 × 0.75 m)
= 409,5 m/s ÷ 3 m
= 136.5 Hz
Now, for the second mode or frequency, n = 2
f₂ = 3v/4L
= 3 ×409.5 m/s ÷ (4 × 0.75 m)
= 3 × 409,5 m/s ÷ 3 m
= 3 × 136.5 Hz
= 409.5 Hz
Now, for the third mode or frequency, n = 5
f₃ = 5v/4L
= 5 × 409.5 m/s ÷ (4 × 0.75 m)
= 5 × 409,5 m/s ÷ 3 m
= 682.5 Hz
object? Can it be moving?
1. By Newton's second law,
F = ma
so the slope of the line would represent the mass of the object.
2. If all the forces are balanced, then the object is in equilibrium with zero net force, which in turn means the object is not accelerating. So the object is either motionless or moving at a constant speed.
The slope on a Force vs. Mass graph represents acceleration. In a Free Body Diagram, if all the forces are balanced, the object could be either at rest or moving at a constant velocity.
1. On a Force vs. Mass graph, the slope of the line represents acceleration, according to Newton's second law of motion, which is force equals mass times acceleration (F=ma). The slope of the line is calculated as the change in force divided by the change in mass, which results in acceleration.
2. In a Free Body Diagram, if all the forces are balanced, it means the net force acting on the object is zero. This does not necessarily mean that the object is stationary. The object could be at rest, or it could be moving at a constant velocity. If an object is moving at a constant velocity, it is said to be in equilibrium because the forces are balanced.
#SPJ11