The pressure in a section of horizontal pipe with a diameter of 2.5 cm is 139 kPa. Water ï¬ows through the pipe at 2.9 L/s. If the pressure at a certain point is to be reduced to 101 kPa by constricting a section of the pipe, what should be the diameter of the constricted section? The acceleration of gravity is 9.81 m/s2 . Assume laminar nonviscous ï¬ow.

Answers

Answer 1
Answer:

Answer:

d = 2*0.87 = 1.75 cm

Explanation:

by using flow rate equation to determine the  speed in larger pipe

\phi =\pi r^2 v

v = (\phi)/(\pi r^2)

  = (2900 cm^3/s)/(3.14(1.25cm)^2)

= 591.10 cm/s

 = 5.91 m/s

by Bernoulli's EQUATION

p1 +(1)/(2) \rho v1^2 = p2 +(1)/(2) \rho v2^2

139000+ (1)/(2)*1000*5.91^2 = 101000 +(1)/(2)*1000* v2^2

solving for v2

v2 = 10.53 m/s

diameter can be determine by using flow rate equation

q = v \pi r^2

r^2 = (q)/(\pi v)

     = (2900)/(3.14*1053)

r = 0.87 cm

d = 2*0.87 = 1.75 cm


Related Questions

A bug flying horizontally at 1.7 m/s collides and sticks to the end of a uniform stick hanging vertically from its other end. After the impact, the stick swings out to a maximum angle of 7.0° from the vertical before rotating back. If the mass of the stick is 16 times that of the bug, calculate the length of the stick (in m).
Early in the morning, when the temperature is 5.5 °C, gasoline is pumped into a car’s 53-L steel gas tank until it is filled to the top. Later in the day the temperature rises to 27 °C. Since the volume of gasoline increases more for a given temperature increase than the volume of the steel tank, gasoline will spill out of the tank. How much gasoline spills out in this case?
One end of a horizontal spring with force constant 130.0 Ni'm is attached to a vertical wall. A 4.00-kg block sitting on the floor is placed against the spring. The coefficient of kinetic friction between the block and the floor is uk = 0.400. You apply a constant force F to the block. F has magnitude F = 82.0 N and is directed toward the wall. At the instant that the spring is com-pressed 80.0 cm, what arc (a) the speed of the block, and (b) the magnitude and direction of the block's acceleration?
Suppose a fast-pitch softball player does a windmill pitch, moving her hand through a circular arc with her arm straight. She releases the ball at a speed of 25.5 m/s (about 57.0 mph ). Just before the ball leaves her hand, the ball's radial acceleration is 1060 m/s2 . What is the length of her arm from the pivot point at her shoulder
A frictionless pendulum is made with a bob of mass 12.6 kg. The bob is held at height = 0.650 meter above the bottom of its trajectory, and then pushedforward with an initial speed of 4.22 m/s. What amount of mechanical energy does the bob have when it reaches the bottom?

A battery lighting a bulb is an example of _ energy converting to _ energy.

Answers

the power source is electrical ( whether the light is plugged in or has a battery) 

the light bulb converts the electricity to light and heat. 

in a fluorescent bulb, it is different, but the electricity is again converted to light, very little heat, though.
Electric energy converting into light and heat energy.

So, for the first blank electric, and the second blank the better answer is light.

A disgruntled autoworker pushes a small foreign import offacliff with a height of h. the vehicle lands a distance away
fromthe cliff. Determine how fast the vehicle was pushed off
thecliff.

Answers

Answer:

v = a/√(2h/g) m/s

Explanation:

Lets say the distance away from the cliff is a.

then, a = v t

where v is velocity with which it was thrown and t is time taken to fall.

Using equations of motion, we can also say that

h=1/2gt^2

where h is the height of the cliff

Thus, t^2 = 2h/g and t = √(2h/g)

Thus, v = a/√(2h/g).

the vehicle was pushed off  the cliff with the velocity , v = a/√(2h/g). m/s

You are standing on the edge of a ravine that is 17.5 m wide. You notice a cave on the opposite wall whose ceiling is 7.3 m below your feet. The cave is 4.2 m deep, and has a vertical back wall. You decide to kick a rock across the ravine into the cave. What initial horizontal velocity must you give the rock so that the rock barely misses the overhang? The acceleration of gravity is 9.8 m/s 2 .

Answers

Answer:

v₀ₓ = 14.34 m / s

Explanation:

We can solve this problem using the projectile launch equations.

Let's look for the time it takes to descend to the height of the cave

    y = v_(oy) t - ½ g t²

As it rises horizontally the initial vertical speed is zero  

    y = 0 - ½ gt²

    t = √2 y / g

    t = √2 7.3 / 9-8

    t = 1.22 s

This is the same time to cross the ravine

    x = v₀ₓ t

    v₀ₓ = x / t

    v₀ₓ = 17.5 / 1.22

    v₀ₓ = 14.34 m / s

This is the minimum speed.

Look at the Kunoichi's of Naruto but as a Gang. Who do you think looks the baddest out of the group(but in a good way)?

My opinion is Hinata...just saying

Answers

Answer:

hinata for sure

Explanation:

seems reasonable

The radius of a typical human eardrum is about 4.15 mm. Calculate the energy per second received by an eardrum when it listens to sound that is at the threshold of hearing, assumed to be 1.20E-12 W/m2

Answers

The energy per second received by an eardrum is 6.4884 * 10^(-17) watt

Calculation of the energy per second;

The area should be

= \pi r^2\n\n= 3.14 * 0.00415m\n\n= 5.407 * 10^(-5)m^2

Now

The power should be

= 1.2 * 10^(-12) * 5.407 * 10^(-5)\n\n= 6.4884 * 10^(-17) watt

Learn more about the energy here: brainly.com/question/14338287

Answer:

Power energy per second will be equal to 6.4884* 10^(-17)watt

Explanation:

We have given radius of human eardrum r = 4.15 mm = 0.00415 m

Intensity at threshold of hearing I=1.2* 10^(-12)w/m^2

Area is given by A=\pi r^2=3.14* 0.00415^2=5.407* 10^(-5)m^2

We know that power is given by P=I* A=1.2* 10^(-12)* 5.407* 10^(-5)=6.4884* 10^(-17)watt

So power energy per second will be equal to 6.4884* 10^(-17)watt

"For the lowest harmonic of pipe with two open ends, how much of a wavelength fits into the pipe’s length?"

Answers

Answer:

0.5 lambda(wavelength)

Explanation:

We know that

The first harmonic for both side open ended pipe is

L= 1/2lambda

So L = 0.5*wavelength