Answer:
The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm
Explanation:
Given;
wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m
maximum kinetic energy of the ejected electron, K.E = 0.92 eV
let the work function of the aluminum metal = Ф
Apply photoelectric equation:
E = K.E + Ф
Where;
Ф is the minimum energy needed to eject electron the aluminum metal
E is the energy of the incident light
The energy of the incident light is calculated as follows;
The work function of the aluminum metal is calculated as;
Ф = E - K.E
Ф = 8.02 x 10⁻¹⁹ - (0.92 x 1.602 x 10⁻¹⁹)
Ф = 8.02 x 10⁻¹⁹ J - 1.474 x 10⁻¹⁹ J
Ф = 6.546 x 10⁻¹⁹ J
The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;
Answer:
The power exerted by the mountain lion is 1,472.35 W.
Explanation:
Given;
mass of mountain, m₁ = 21 kg
mass of the cub, m₂ = 3 kg
height jumped by the mountain lion, h = 2 m
time taken for the mountain lion to jump, t = 1 s
Determine the weight of the lions on the top rock;
W = F = (m₁ + m₂)g
F = (21 + 3) x 9.8
F = (24) x 9.8
F = 235.2 N
Determine the final velocity of the mountain rock as it jumped to the top;
v² = u² + 2gh
where;
u is the initial velocity = 0
h is the height jumped = 2 m
v² = 0 + 2 x 9.8 x 2
v² = 39.2
v = √39.2
v = 6.26 m/s
The power exerted by the mountain lion is calculated as;
P = Fv
P = 235.2 x 6.26
P = 1,472.35 W
Therefore, the power exerted by the mountain lion is 1,472.35 W.
Answer:
a) Revolutions per minute = 2.33
b) Centripetal acceleration = 11649.44 m/s²
Explanation:
a) Angular velocity is the ratio of linear velocity and radius.
Here linear velocity = 72 m/s
Radius, r = 0.89 x 0. 5 = 0.445 m
Angular velocity
Frequency
Revolutions per minute = 2.33
b) Centripetal acceleration
Here linear velocity = 72 m/s
Radius, r = 0.445 m
Substituting
Centripetal acceleration = 11649.44m/s²
Calculate BE/A, the binding energy per nucleon, for 2H in megaelecton volts per nucleon
Answer:
0.88 MeV/nucleon
Explanation:
The binding energy (B) per nucleon of deuterium can be calculated using the following equation:
Where:
Z: is the number of protons = 1
N: is the number of neutrons = 1
: is the proton's mass = 1.00730 u
: is the neutron's mass = 1.00869 u
M: is the nucleu's mass = 2.01410
A = Z + N = 1 + 1 = 2
Now, the binding energy per nucleon for ²H is:
Therefore, the binding energy per nucleon for ²H is 0.88 MeV/nucleon.
I hope it helps you!
The binding energy per nucleon for 2H (deuterium) is 1.1125 MeV per nucleon.
The binding energy per nucleon, or BE/A, can be calculated by dividing the total binding energy of the nucleus by the number of nucleons. To calculate the BE/A for 2H (deuterium), we need to know the total binding energy and the number of nucleons in deuterium. The total binding energy of deuterium is approximately 2.225 MeV (megaelectron volts) and the number of nucleons is 2. Therefore, the BE/A for 2H is 2.225 MeV / 2 = 1.1125 MeV per nucleon.
#SPJ11
B) is 0.21 km/s.
C) is 65 m/s.
D) is 9.3 m/s.
E) None of these is correct
Answer:
Explanation:
Using the law of conservation of momentum to solve the problem. According to the law, the sum of momentum of the bodies before collision is equal to the sum of the bodies after collision. The bodies move with the same velocity after collision.
Mathematically.
mu + MU = (m+M)v
m and M are the masses of the bullet and the block respectively
u and U are their respective velocities
v is their common velocity
from the question, the following parameters are given;
m = 20g = 0.02kg
u = 960m/s
M = 4.5kg
U =0m/s (block is at rest)
Substituting this values into the formula above to get v;
0.02(960)+4.5(0) = (0.02+4.5)v
19.2+0 = 4.52v
4.52v = 19.2
Dividing both sides by 4.52
4.52v/4.52 = 19.2/4.52
v = 4.25m/s
Since they have the same velocity after collision, then the speed of the block immediately after the collision is also 4.25m/s
Answer:
Explanation:
Gauss' Law should be applied to find the E-field 3.9 cm from the surface of the sphere.
In order to apply Gauss' Law, an imaginary spherical shell (Gaussian surface) should be placed around the original sphere. The exact position of the shell must be 3.9 cm from the surface of the original sphere.
Gauss' Law states that
Here, the integral in the left-hand side is equal to the area of the imaginary surface. After all, the reason behind choosing the imaginary surface a spherical shell is to avoid this integral. The enclosed charge in the right-hand side is equal to the charge of the sphere, -84.0 nC. The radius of the imaginary surface must be 5 + 3.9 = 8.9 cm.
So,
Answer:
Explanation:
A comet is a celestial body made up of ice and dust and assumed to have a tail.
As per considering ancient history, they are even termed as death-dealers and have doomed many planets.
If we talk about Earth, comets and asteroids have played a massive role in changing Earth's geology, atmosphere and evolution. Its believed that dinosaurs population is wiped out from Earth because of comets that falls during that time. Many new diseases are even brought by them.
Large comets can result into global environmental damage and can even lead to mass extension.The dust from the impact and the heat creates many harmful oxides resulting into acid rain and can kill thousand of organism.