Answer: the first shows the speakers actions; the second shows the beloveds opposition to them
Explanation:
Answer:
a.) Speed V = 29.3 m/s
b.) K.E = 1931.6 J
Explanation: Please find the attached files for the solution
The wheel's speed at the bottom of the hill can be found through the conservation of energy equation considering both translational and rotational kinetic energy, while the total kinetic energy at the bottom of the hill is a sum of translational and rotational kinetic energy.
These two questions address the physics concepts of conservation of energy, kinetic energy, and rotational motion. To answer the first question, (a) How fast is the wheel moving when it reaches the bottom of the hill if it rolled without slipping all the way down?, we need to consider the potential energy the wheel has at the top of the hill is completely converted into kinetic energy at the bottom. This includes both translational and rotational kinetic energy. Solving for the final velocity, vf, which would be the speed of the wheel, we get vf = sqrt((2*g*h)/(1+I/(m*r^2))), where g is the acceleration due to gravity, h is the height of the hill, I is the moment of inertia of the wheel, m is the mass of the wheel, and r is the radius of the wheel.
For the second question, (b) How much total kinetic energy does it have when it reaches bottom of the hill?, we use the formula for total kinetic energy at the bottom of the hill, K= 0.5*m*v^2+0.5*I*(v/r)^2. Substituting the value of v found in the first part we find the kinetic energy which we can use the formula provided in the reference information.
#SPJ11
The Magnetic flow is given by the formula,
Replacing the values
2. When the low power (10X) objective is used the total magnification will be:________
3. When the high power (40X) objective is used the total magnification will be:________
4. When the oil immersion (100X) objective is used the total magnification will be:_________
Answer:
a) m_ttoal = 40x, b) m_total = 100X, c) m_total = 400X,
d) m_total = 1000 X
Explanation:
La magnificación o aumentos es el incremento de del tamaño de la imagen con respecto al tamaño original del objeto, en la mayoria del os sistema optico la magnificacion total es el producoto de la magnificación del objetivo por la magnificación del ocular
m_total = m_ objetivo * m=ocular
apliquemos esto a nuestro caso
1) m_total = 4 x * 10 x
m_ttoal = 40x
2) m_total = 10X * 10X
m_total = 100X
3)mtotal = 40X * 10X
m_total = 400X
4) m _totla = 100x * 10 X
m_total = 1000 X
en este ultimo caso para magnificación grandes es decalcificar el objeto
The total magnification produced by different combinations of eyepiece and objective lenses in a microscope.
1. When the scanning (4X) objective is used, the total magnification will be 40X because the eyepiece magnification is 10X and the objective magnification is 4X.
2. When the low power (10X) objective is used, the total magnification will be 100X because the eyepiece magnification is 10X and the objective magnification is 10X.
3. When the high power (40X) objective is used, the total magnification will be 400X because the eyepiece magnification is 10X and the objective magnification is 40X.
4. When the oil immersion (100X) objective is used, the total magnification will be 1000X because the eyepiece magnification is 10X and the objective magnification is 100X.
#SPJ3
A.The time taken for the car to stop is 8.75 s
B.The distance travelled when the brakes were applied till the car stops is 136.89 m
A. Determination of the time taken for the car to stop.
Initial velocity (u) = 70 mph = 0.447 × 70 = 31.29 m/s
Final velocity (v) = 30 mph = 0.447 × 30 = 13.41 m/s
Time (t) = 5 s
Initial velocity (u) = 31.29 m/s
Final velocity (v) = 0 m/s
Deceleration (a) = –3.576 m/s²
Thus, the time taken for the car to stop is 8.75 s
B.Determination of the total distance travelled when the brakes were applied.
Initial velocity (u) = 31.29 m/s
Final velocity (v) = 0 m/s
Deceleration (a) = –3.576 m/s²
Therefore, the total distance travelled by the car when the brakes were applied is 136.89 m
Learn more: brainly.com/question/9163788
Answer:8.75 s,
136.89 m
Explanation:
Given
Initial velocity
velocity after 5 s is
Therefore acceleration during these 5 s
therefore time required to stop
v=u+at
here v=final velocity =0 m/s
initial velocity =31.29 m/s
(b)total distance traveled before stoppage
s=136.89 m
Answer:
a)the ball will leave the bat at an angle of 61.3° .
b) the velocity at which it will hit the ground will be v = 27.1 m/s
Explanation:
Given,
v = 47.24 m
h = 0.42 m
t = 5.73 s
R = 130 m
a)We know that
R = v cosθ × t
cosθ =
θ = 61.3°
the ball will leave the bat at an angle of 61.3° .
b)Vx = v cos(θ) = 47.24 x cos 61.3 = 22.7 m/s
v = u + at
Vy = 47.24 x sin 61.3 - 9.81 x 5.73
= -14.8 m/s
v =
v =
v = 27.1 m/s
the velocity at which it will hit the ground will be v = 27.1 m/s
Answer:
4.875 V
Explanation:
N = 1300
diameter = 2.10 cm
radius = half of diameter = 1.05 cm
B1 = 0.130 T
B2 = 0 T
t = 12 ms
According to the law of electromagnetic induction,
Where, Ф be the magnetic flux linked with the coil
e = 4.875 V