Answer:
A) m2 = 98.71g
B) v_f2 = 1.86 m/s
Explanation:
We are given;
Mass of cart; m1 = 340g
Initial speed; v_i1 = 1.2 m/s
Final speed; v_f1 = 0.66 m/s
A)Since the collision is elastic, we can simply apply the conservation of momentum to get;
m1•(v_i1) = m1•(v_f1) + m2•(v_f2) - - - - - (eq1)
From conservation of kinetic energy, we have;
(1/2)m1•(v_i1)² = (1/2)m1•(v_f1)² + (1/2)m2•(v_f2)² - - - - eq(2)
Let's make v_f2 the subject in eq 2;
Thus,
v_f2 = √([m1•(v_i1)² - m1•(v_f1)²]/m2)
v_f2 = √([m1((v_i1)² - (v_f1)²)]/m2)
Let's put this for v_f2 in eq1 to obtain;
m2 = {m1((v_i1) - (v_f1))}/√([m1((v_i1)² - (v_f1)²)]/m2)
Let's square both sides to give;
(m2)² = {m1•m2((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]
This gives;
m2 = {m1((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]
Plugging in the relevant values to get;
m2 = {340((1.2) - (0.66))²}/([(1.2)² - (0.66)²]
m2 = 98.71g
B) from equation 1, we have;
m1•(v_i1) = m1•(v_f1) + m2•(v_f2)
Making v_f2 the subject, we have;
v_f2 = m1[(v_i1) - (v_f1)]/m2
Plugging in the relevant values to get;
v_f2 = 340[(1.2) - (0.66)]/98.71
v_f2 = 1.86 m/s
To determine the mass of the second cart and its speed after impact, we can use the principle of conservation of momentum. The initial momentum of the first cart is equal to its final momentum plus the momentum of the second cart. After calculating the mass of the second cart, we can use the conservation of momentum again to find its speed by equating the final velocity of the combined carts to the initial velocity of the first cart.
To determine the mass of the second cart, we can use the principle of conservation of momentum. The initial momentum of the first cart, with a mass of 340 g and an initial velocity of 1.2 m/s, is equal to its final momentum plus the momentum of the second cart. Using this equation, we can solve for the mass of the second cart.
After calculating the mass of the second cart, we can use the conservation of momentum again to find its speed after the impact. Since the two carts stick together after the collision, the final velocity of the combined carts is equal to the initial velocity of the first cart. Using this equation, we can solve for the speed of the second cart.
#SPJ11
Explanation:
Using table A-3, we will obtain the properties of saturated water as follows.
Hence, pressure is given as p = 4 bar.
= 2553.6 kJ/kg
At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.
Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So,
According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at and temperature so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.
Now, using interpolation we will find the internal energy as follows.
= 2963.2 - 2.005
= 2961.195 kJ/kg
Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.
Q - W = ......... (1)
Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.
= 0
Now, equation will be as follows.
Q - W =
Q - 0 =
Q =
Now, we will obtain the heat transfer per unit mass as follows.
= (2961.195 - 2553.6)
= 407.595 kJ/kg
Thus, we can conclude that the heat transfer is 407.595 kJ/kg.
The heat transfer is 227.4 kJ per kg of water.
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C. To determine the heat transfer in kJ per kg of water, we need to calculate the heat absorbed by the water as it reaches 360°C.
Using the specific heat capacity of water (4,186 J/kg°C) and the change in temperature (360°C - 100°C), we can calculate the heat transfer:
Qw = mw * cw * AT = (1 kg) * (4186 J/kg°C) * (360°C - 100°C) = 227,440 J = 227.4 kJ
Therefore, the heat transfer is 227.4 kJ per kg of water.
Heat transfer is the process by which thermal energy moves from one object or substance to another due to a difference in temperature. This fundamental phenomenon occurs through three main mechanisms: conduction, convection, and radiation. Conduction involves the direct transfer of heat through a material, such as metal. Convection is the transfer of heat through the movement of fluids (liquids or gases). Radiation is the emission of electromagnetic waves carrying heat energy. Understanding heat transfer is essential in various fields, including physics, engineering, and environmental science, as it governs temperature regulation, climate dynamics, and the functioning of countless technological devices.
#SPJ3
Answer:
The frictional torque is
Explanation:
From the question we are told that
The mass attached to one end the string is
The mass attached to the other end of the string is
The radius of the disk is
At equilibrium the tension on the string due to the first mass is mathematically represented as
substituting values
At equilibrium the tension on the string due to the mass is mathematically represented as
The frictional torque that must be exerted is mathematically represented as
substituting values
Answer:here to earn points
Explanation:
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for DAC:
⇒
Now for the BAC:
⇒
Now, differentiating w.r.t x:
For maximum angle, = 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 =
After solving the above eqn, we get
x =
The observer should stand at a distance equal to x =
For optimum viewing of a painting in a gallery, an observer should position themselves a distance away from the painting calculated using Pythagoras theorem, forming a right-angled triangle with the painting and the floor. This distance can be expressed as c = √[(h/2 + d)² + (h/2)²], where h is the height of the painting and d is the height from the observer's eye to the bottom of the painting.
In the physics of optics, the viewer should position themselves to where they form a right-angled triangle with the ceiling and the painting leading to the best viewing experience. This is widely known as the 'normal viewing distance'.
Given that the painting has a height h and its lower edge is at a distance d above the observer's eye, the observer should stand a distance away from the wall, which can be calculated using Pythagoras' theorem in right triangles, which states that the square of the hypotenuse (c) is equal to the sum of the square of the other two sides (a and b), i.e., c² = a² + b²
Since the painting height and viewer height forms the right-angle in this case, we have: a = (h/2 + d), and b = h/2. Substituting a and b in Pythagoras equation, we can solve for c which is the required distance: c = √[(h/2 + d)² + (h/2)²]
#SPJ3
Answer:
0.00461031264 m/s
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of the Earth = 6 × 10²⁴ kg
r = Distance between Earth and Sun =
t = Time taken = 3 days
Acceleration is given by
Velocity of the star
The Sun's speed will be 0.00461031264 m/s
x = vi(cos )t
x = ayt
x = vxt (RIGHT ANSWER)
The formula for calculating the horizontal displacement of a horizontally launched projectile is
A projectile launched horizontally with a velocity v, at a height y ,travels a horizontal distance x, while falling through a distance y. The horizontal velocity of a projectile remains constant throughout its motion, in the absence of air resistance. The vertical component of the velocity is under the action of the gravitational force and hence it increases in magnitude as it falls through the height.
The horizontal displacement of the projectile is a uniform motion and it occurs at a constant speed v.
Thus, the horizontal displacement of the projectile is given by the expression.
Answer:
465 feet because 93*5 = 465, btw that was 1993 not 1933
Explanation: