1. Compare and contrast the SI and the English systems of measurement.

Answers

Answer 1
Answer:

Answer:The SI system is based on the number 10 as well as multiples and products of 10. This makes it much easier to use, and so it has been the accepted system in scientific and technical applications. The English system is more complicated as relationships between units of the same quantity aren't uniform.

Explanation:

Answer 2
Answer:

Answer:

The metric system is an internationally agreed decimal system of measurement while The International System of Units (SI) is the official system of measurement in almost every country in the world


Related Questions

A car with tires of radius 0.25 m come to a stop from 28.78 m/s (100 km/hr) in 50.0 m without any slipping of tires. Find: (a) the angular acceleration of the wheels; (b) number of revolutions made while coming to rest.
A parallel-plate vacuum capacitor has 7.72 J of energy stored in it. The separation between the plates is 3.30 mm. If the separation is decreased to 1.45 mm, For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Stored energy. Part A what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed
A diverging lens has a focal length of -30.0 cm. An object is placed 18.0 cm in front of this lens.(a) Calculate the image distance.(b) Calculate the magnification.
Two ice skaters, Lilly and John, face each other while at rest, and then push against each other's hands. The mass of John is twice that of Lilly. How do their speeds compare after they push off? Lilly's speed is one-fourth of John's speed. Lilly's speed is the same as John's speed. Lilly's speed is two times John's speed. Lilly's speed is four times John's speed. Lilly's speed is one-half of John's speed.
Convert this measurement664.2 km=____cm

A spring-loaded gun, fired vertically, shoots a marble 9.0 m straight up in the air. What is the marble's range if it is fired horizontally from 1.8 m above the ground?

Answers

Final answer:

The range of the marble when fired horizontally from 1.8m above the ground can be calculated using the equations of motion in physics. First, the time of flight is found using the vertical motion and then the range is calculated using the time of flight and the initial velocity determined from the vertical launch. The marble's range is approximately 8.4m.

Explanation:

To solve this problem, we need to make use of the concept of projectile motion in physics. The most crucial part in solving this type of problem is to break the motion into its horizontal and vertical components.

First, we find the time the projectile is in the air using the vertical motion. Ignoring air resistance, the time a projectile is in the air is determined by the initial vertical velocity and the height from which it drops. Here, the height is given as 1.8m and we can use the equation h = 0.5gt^2, where h is the height, g is the acceleration due to gravity (9.8 m/s^2), and t is the time. After calculating, we find that the time the marble is in the air is about 0.6 seconds.

Now, we can use the time to find the horizontal distance traveled by the marble, a.k.a the range. The range is given by R = vt, where v is the horizontal velocity, which is the same as the initial vertical velocity. From the problem, we know the marble reached a height of 9.0m when shot vertically, which we can use to find the initial velocity using the equation v = sqrt(2gh), where g is the acceleration due to gravity (9.8 m/s^2) and h is the height. We find that the initial velocity is about 14 m/s.

So, the range R = vt = 14m/s * 0.6s = 8.4m. Therefore, the marble's range when fired horizontally from 1.8m above the ground is approximately 8.4m.

Learn more about Projectile Motion here:

brainly.com/question/29545516

#SPJ3

Dogs can hear higher-pitched whistles that humans do. How do you
think the sound frequencies that dogs can
hear compare to the frequencies that humans
can hear?

Answers

Dogs can hear sounds at higher frequencies than humans. The range of sound frequencies that dogs can hear is approximately 40 Hz to 60,000 Hz, while the range for humans is 20 Hz to 20,000 Hz. This means that dogs can hear ultrasonic sounds that are beyond the range of human hearing.

What is sound about?

In terms of physics, sound is a vibration that travels through a transmission medium like a gas, liquid, or solid as an acoustic wave.

Sound is the reception of these waves and the brain's perception of them in terms of human physiology and psychology. Dogs have the ability to hear ultrasonic sounds that are audible only to them.

Learn more about sound on:

brainly.com/question/16093793

#SPJ1

Two workers are sliding 300 kg crate across the floor. One worker pushes forward on the crate with a force of 400 N while the other pulls in the same direction with a force of 290 N using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor

Answers

Answer:

The kinetic coefficient of friction of the crate is 0.235.

Explanation:

As a first step, we need to construct a free body diagram for the crate, which is included below as attachment. Let supposed that forces exerted on the crate by both workers are in the positive direction. According to the Newton's First Law, a body is unable to change its state of motion when it is at rest or moves uniformly (at constant velocity). In consequence, magnitud of friction force must be equal to the sum of the two external forces. The equations of equilibrium of the crate are:

\Sigma F_(x) = P+T-\mu_(k)\cdot N = 0 (Ec. 1)

\Sigma F_(y) = N - W = 0 (Ec. 2)

Where:

P - Pushing force, measured in newtons.

T - Tension, measured in newtons.

\mu_(k) - Coefficient of kinetic friction, dimensionless.

N - Normal force, measured in newtons.

W - Weight of the crate, measured in newtons.

The system of equations is now reduced by algebraic means:

P+T -\mu_(k)\cdot W = 0

And we finally clear the coefficient of kinetic friction and apply the definition of weight:

\mu_(k) =(P+T)/(m\cdot g)

If we know that P = 400\,N, T = 290\,N, m = 300\,kg and g = 9.807\,(m)/(s^(2)), then:

\mu_(k) = (400\,N+290\,N)/((300\,kg)\cdot \left(9.807\,(m)/(s^(2)) \right))

\mu_(k) = 0.235

The kinetic coefficient of friction of the crate is 0.235.

Final answer:

The calculation of the coefficient of kinetic friction involves setting the total force exerted by the workers equal to the force of friction, as the crate moves at a constant speed. The coefficient of kinetic friction is then calculated by dividing the force of friction by the normal force, which is the weight of the crate. The coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Explanation:

To calculate the coefficient of kinetic friction, we first must understand that the crate moves at a constant velocity, indicating that the net force acting on it is zero. Thus, the total force exerted by the workers (400 N + 290 N = 690 N) is equal to the force of friction acting in the opposite direction.

Since the frictional force (F) equals the normal force (N) times the coefficient of kinetic friction (μk), we can write the equation as F = μkN. Here, the normal force is the weight of the crate, determined by multiplying the mass (m) of the crate by gravity (g), i.e., N = mg = 300 kg * 9.8 m/s² = 2940 N.

Next, we rearrange the equation to solve for the coefficient of kinetic friction: μk = F / N. Substituting the known values (F=690 N, N=2940 N), we find: μk = 690 N / 2940 N = 0.2347. Thus, the coefficient of kinetic friction for the crate on the floor is approximately 0.235.

Learn more about the Coefficient of kinetic friction here:

brainly.com/question/30394536

#SPJ3

Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.2 s and was brought jarringly back to rest in only 1 s. Calculate his (a) magnitude of acceleration in his direction of motion and (b) magnitude of acceleration opposite to his direction of motion. Express each in multiples of g (9.80 m/s2) by taking its ratio to the acceleration of gravity. g g

Answers

Answer:

    a = 5.53 g ,   a = -15g

Explanation:

This is an exercise in kinematics.

a) Let's look for the acceleration

         as part of rest v₀ = 0

          v = v₀ + a t

           a = v / t

           a = 282 / 5.2

          a = 54.23 m / s²

in relation to the acceleration of gravity

          a / g = 54.23 / 9.8

          a = 5.53 g

b) let's look at the acceleration to stop

         va = 0

         0 = v₀ -2 a y

         a = vi / y

         a = 282/2 1

         a = 141 m /s²

         a / G = 141 / 9.8

          a = -15g

How much longer will it taketo travel a distance of 6ookm at
a speed of 50kmh than it
would at a
speed of 6okmh?

Answers

Answer:

2hr much longer

Explanation:

Given parameters

  Distance  = 600km

   Speed 1  = 50km/h

   Speed 2 = 60km/h

Unknown:

How much longer will it take to travel a distance  = ?

Solution:

  Speed is the distance divided by time;

          Speed  = (distance)/(time)  

 Now;

           Time taken  = (Distance)/(Speed)  

Time 1;

                        = (600)/(50)

                       = 12hr

Time 2;

                       = (600)/(60)

                       = 10hr

To find how much more time;

            Time 1 will take 12hr - 10hr, 2hr much longer to travel the distance at that rate.

Light of wavelength 608.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 88.5 cm from the slit. The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm. What is the width of the slit?

Answers

Answer:

The width of the slit is 0.167 mm

Explanation:

Wavelength of light, \lambda=608\ nm=608* 10^(-9)\ m

Distance from screen to slit, D = 88.5 cm = 0.885 m

The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm, y = 1.61 cm = 0.0161 m

We need to find the width of the slit. The formula for the distance on the screen between the fifth order minimum and the central maximum is :

y=(mD\lambda)/(a)

where

a = width of the slit

a=(mD\lambda)/(y)

a=(5* 0.885\ m* 608* 10^(-9)\ m)/(0.0161\ m)

a = 0.000167 m

a=1.67* 10^(-4)\ m

a = 0.167 mm

So, the width of the slit is 0.167 mm. Hence, this is the required solution.