Answer:
The answer is below
Explanation:
a) Using the formula:
b)
Answer: wavelength =3.52m
Explanation:
,λ=c/μ
where c=speed of the light,λ=wave length, μ=frequncy
c=3x10^8m/s
And
μ=83.5/MHz =85.3x10^6Hz==85.3x10^6Hz=
=85.3x10^6s-1
λ=c/μ
=3x10^8m/s/85.3x10^6s-1
=3.51699883
=3.52m
Answer:
x = 0.68 meters
Explanation:
It is given that,
Mass of the car, m = 1500 kg
Speed of the car, v = 25 m/s
Spring constant of the spring,
When the car hits the uncompressed horizontal ideal spring the kinetic energy of the car is converted to the potential energy of the spring. Let x is the maximum distance compressed by the spring such that,
x = 0.68 meters
So, the spring is compressed by a distance of 0.68 meters. Hence, this is the required solution.
The maximum distance the spring compresses when a 1500 kg car moving at 25 m/s hits it, given a spring constant of 2.0 × 10⁶N/m, is approximately 0.53 meters or 53 centimeters.
In this specific problem, we can apply the conservation of energy principle, where the initial kinetic energy of the car is converted into potential energy stored in the spring when the car comes to a stop. The formula for kinetic energy is K = 1/2 × m× v² and for potential energy stored in a spring is U = 1/2×k × x², where m = mass of the car, v = velocity of the car, k = spring constant, and x = maximum distance the spring is compressed.
By setting the kinetic energy equal to potential energy (since no energy is lost), we get 1/2 × m×v² = 1/2×k×x². Solving this equation for x (maximum compression of the spring), we obtain x = sqrt((m×v²)/k). Substituting the given values, x = sqrt((1500 kg× (25 m/s)²) / (2.0 × 10⁶ N/m)), which yields approximately 0.53 meters or 53 centimeters. Therefore, the maximum distance the spring compresses is 53 cm.
#SPJ3
infrared waves
ocean waves
radio waves
untraviolet waves
Since electromagnetic waves do not require a medium for their transmission, the electromagnetic waves are radio waves, ultraviolet waves and infrared waves.
Electromagnetic waves or radiations are waves which occur as a result of the interaction between the electric and magnetic fields.
Electromagnetic waves do not require a material medium for their transmission and as such can travel through a vacuum.
Some examples of electromagnetic waves are radio waves, ultraviolet waves, microwaves, infrared waves etc.
Therefore, the electromagnetic waves are radio waves, ultraviolet waves and infrared waves.
Learn more about electromagnetic waves at: brainly.com/question/25847009
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;
k = 1.4
Work done is given as;
inlet velocity is negligible;
Therefore, the exit velocity is 629.41 m/s
Answer:
The truck will reach there in 250 seconds.
Explanation:
The frequency due to doppler effect, when the observer is stationary and the source is moving towards it is
=
where v= velocity of sound in air
= velocity of source of sound
f= frequency of sound and
= frequency oberved due to Doppler effect
= 460------------------------------------------( 1 )
The frequency due to doppler effect, when the observer is stationary and the source is moving away from it
=
where v= velocity of sound in air
= velocity of source of sound
f= frequency of sound and
= frequency oberved due to Doppler effect
= 410-------------------------------------------( 2 )
Dividing ( 1 ) by ( 2 )
41v + 41 = 46v - 46
87= 5v
=
Velocity of Sound (v)= 348 m/s
=20 m/s
Therefore, the truck is moving at 20 m/s.
Distance= 5000 m
Time=
Time= 250 s
Time = 4 min 10 sec
To solve this problem it is necessary to apply the concepts related to the Period based on gravity and length.
Mathematically this concept can be expressed as
Where,
l = Length
g = Gravitational acceleration
First we will find the period that with the characteristics presented can be given on Mars and then we can find the length of the pendulum at the desired time.
The period on Mars with the given length of 0.99396m and the gravity of the moon (approximately will be
For the second question posed, it would be to find the length so that the period is 2 seconds, that is:
Therefore, we can observe also that the shorter distance would be the period compared to the first result given.