Convert this measurement
664.2 km=____cm

Answers

Answer 1
Answer:

(664.2 km) · (1,000 m/km) · (100 cm/m) =

(664.2 · 1,000 · 100) (km·m·cm/km·m) =

66,420,000 cm

Answer 2
Answer:

For metric conversion, you can remember this acronym for help:

King Henry died unusually drinking chocolate milk. Which stand for:

Kilo - unit * 1000

Hecto - unit * 100

Deca - unit * 10

Unit - unit * 1

Deci - unit * (1)/(10)

Centi - unit * (1)/(100)

Milli - unit * (1)/(100)

Kilometers and centimeters are five places apart apart, so you move the decimal point in 664.2 to the right five times, which means 664.2 km = 66420000 cm.

To avoid confusion on which direction to move the decimal point, imagine two shapes on each end of a scale. On each end, there is one large shape and one small shape. There has to be one of each on either side for it to balance. For this problem, a kilometer is a larger unit than a centimeter, so this means that the blank space needs to have a number greater than 664.2, or else the scale won't balance. Hope this helped.


Related Questions

A student lifts their 75 N backpack 0.50 m onto their chair. How much work is done?
You have a battery marked " 6.00 V ." When you draw a current of 0.361 A from it, the potential difference between its terminals is 5.07 V . What is the potential difference when you draw 0.591 A
The normal is a line perpendicular to the reflecting surface at the point of incidence.
Resonances of the ear canal lead to increased sensitivity of hearing, as we’ve seen. Dogs have a much longer ear canal—5.2 cm—than humans. What are the two lowest frequencies at which dogs have an increase in sensitivity? The speed of sound in the warm air of the ear is 350 m/s.A. 1700 Hz, 3400 HzB. 1700 Hz, 5100 HzC. 3400 Hz, 6800 HzD. 3400 Hz, 10,200 Hz
A spring-loaded gun, fired vertically, shoots a marble 9.0 m straight up in the air. What is the marble's range if it is fired horizontally from 1.8 m above the ground?

If the absolute pressure of gas is 550.280 kPa, its gauge pressure is

Answers

pressure absolute = pressure gage + pressure atmosphere

Answer:

650.280

Explanation: 100kpa + 550.280kpa

Kathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting line 1.00 s after Stan does. Stan moves with a constant acceleration of 3.1 m/s2 while Kathy maintains an acceleration of 4.99 m/s. 2 (a) Find the time at which Kathy overtakes Stan. s from the time Kathy started driving (b) Find the distance she travels before she catches him (c) Find the speeds of both cars at the instant she overtakes him. Kathy m/s Stan m/s

Answers

Answer:

(a) t=3.87 s :time at which Kathy overtakes Stan

(b) d=37.36 m

(c) vf₁ = 15.097 m/s : Stan's final speed

    vf₂ = 19.31 m/s : Kathy's final speed

Explanation:

kinematic analysis

Because Kathy and Stan move with uniformly accelerated movement we apply the following formulas:

vf= v₀+at Formula (1)

vf²=v₀²+2*a*d Formula (2)

d= v₀t+ (1/2)*a*t² Formula (3)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s²

Nomenclature

d₁: Stan displacement   

t₁ :  Stan time

v₀₁: Stan initial speed

vf₁: Stan final speed

a₁:  Stan acceleration

d₂: car displacement   

t₂ : Kathy time

v₀₂: Kathy initial speed

vf₂: Kathy final speed

a₂:  Kathy acceleration

Data

v₀₁ = 0

v₀₂ = 0

a₁ = 3.1 m/s²

a₂= 4.99 m/s²

t₁ = (t₂ +1) s

Problem development

By the time Kathy overtakes Stan, the two will have traveled the same distance:

d₁ = d₂

t₁ = (t₂ +1)

We aplpy the Formula (3)

d₁ = v₀₁t₁ + (1/2)*a₁*t₁²

d₁ = 0 + (1/2)*(3.1)*t₁²

d₁ =  1.55*t₁² ; Stan's cinematic equation 1

d₂ = v₀₂t₂ + (1/2)*a₂*t₂²

d₂ = 0 + (1/2)*(4.99)*t₂²

d₂ = 2.495* t₂² : Kathy's cinematic equation 2

d₁ = d₂

equation 1=equation 2

1.55*t₁²  =  2.495* t₂²  , We replace t₁ = (t₂ +1)

1.55* (t₂ +1) ² =2.495* t₂²

1.55* (t₂² +2t₂+1) =2.495* t₂²

1.55*t₂²+1.55*2t₂+1.55 = 2.495* t₂²

1.55t₂²+3.1t₂+1.55=2.495t₂²

(2.495-1.55)t₂² - 3.1t₂ - 1.55 = 0

0.905t₂² - 3.1t₂ - 1.55 = 0  Quadratic equation

Solving the quadratic equation we have:

(a) t₂ = 3.87 s : time at which Kathy overtakes Stan

(b) Distance in which Kathy catches Stan

we replace t₂ = 3.87 s in equation 2

d₂ = 2.495*( 3.87)²

d₂ = 37.36 m

(c) Speeds of both cars at the instant  Kathy overtakes Stan

We apply the Formula (1)

vf₁= v₀₁+a₁t₁    t₁ =( t₂+1 ) s=( 3.87 + 1 ) s = 4.87 s

vf₁= 0+3.1* 4.87

vf₁ = 15.097 m/s : Stan's final speed

vf₂ = v₀₂+a₂ t₂  

vf₂ =0+4.99* 3.87

vf₂ = 19.31m/s : Kathy's final speed

While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?

Answers

Answer:

The speed is   v =8.17 m/s

Explanation:

From the question we are told that

      The angle of slant is  \theta = 37.0^o

       The weight of the toolbox is  W_t = 92.0N

       The mass of the toolbox is m = (92)/(9.8) = 9.286kg

       The start point is  d = 4.25m from lower edge of roof

        The kinetic frictional force is  F_f = 22.0N

Generally the net work done on this tool box can be mathematically represented as

      Net \ work done  =  Workdone \ due \ to \ Weight + Workdone \ due \ to \ Friction

The workdone due to weigh is  =    mgsin \theta * d

 The workdone due to friction is  = F_f \ cos\theta  *   d

Substituting this into the equation for net workdone  

                 W_(net) = mgsin\theta  * d + F_f  \ cos \theta *d

      Substituting values

                  W_(net)  =  92 * sin (37)  * 4.25 + 22 cos (37) * 4.25

                          = 309.98 J

 According to work energy theorem

             W_(net) = \Delta Kinetic \ Energy

              W_(net) = (1)/(2) m (v - u)^2

From the question we are told that it started from rest so  u = 0 m/s

              W_(net) = (1)/(2) * m v^2

Making v the subject

               v = \sqrt{(2 W_(net))/(m) }

Substituting value

              v = \sqrt{(2 * 309.98)/(9.286) }

             v =8.17 m/s

Sound with frequency 1300 Hz leaves a room through a doorway with a width of 1.03 m . At what minimum angle relative to the centerline perpendicular to the doorway will someone outside the room hear no sound

Answers

Answer:

  about 14.7°

Explanation:

The formula for the angle of the first minimum is ...

  sin(θ) = λ/a

where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.

The wavelength of the sound is the speed of sound divided by the frequency:

  λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m

Then the angle of interest is ...

  θ = arcsin(0.261538/1.03) ≈ 14.7°

At an angle of about 14.7°, someone outside the room will hear no sound.

Describe the objects that make up Saturn's rings. Your answer should include the range of sizes of objects in the rings, and the composition of the at least the outer layers of the objects.

Answers

Saturn's rings are made of billions of pieces of ice, dust and rocks. Some of these particles are as small as a grain of salt, while others are as big as houses.

A ship is traveling at 154 m/s and accelerates at a rate of 1.80 m/s^2 for 1 minute. What will its speed be after that minute? Calculate the answer in both meters per second and kilometers per hour.

Answers

Given:

u(initial velocity): 154 m/s

accelerates (a): 1.8 m/s^2

t= 1 min=60 secs

Now we know that

s= ut  + 1/2(at^2)

s= 154 x 60 + (1.8 × 60 ×60) ÷ 2

s= 12,480 m