Charge q1 is placed a distance r0 from charge q2 . What happens to the magnitude of the force on q1 due to q2 if the distance between them is reduced to r0/4 ?What is the electrostatic force between and electron and a proton separated by 0.1 mm?

Answers

Answer 1
Answer:

Answer:

The electrostatic force between and electron and a proton is F=2.30* 10^(-20)\ N

Explanation:

It is given that, charge q_1 is placed at a distance r_o from charge q_2. The force acting between charges is given by :

F=(kq_1q_2)/(r_o^2)

We need to find the force if the distance between them is reduced to r_o/4. It is given by :

F'=(kq_1q_2)/((r_o/4)^2)

F'=16* (kq_1q_2)/(r_o^2)

F'=16* F

So, if the the distance between them is reduced to r_o/4, the new force becomes 16 times of the previous force.

The electrostatic force between and electron and a proton separated by 0.1 mm or 10^(-4)\ m is :

F=(kq_1q_2)/(r_o^2)

F=(9* 10^9* (1.6* 10^(-19))^2)/((10^(-4))^2)

F=2.30* 10^(-20)\ N

So, the electrostatic force between and electron and a proton is F=2.30* 10^(-20)\ N. Hence, this is the required solution.


Related Questions

g During a collision with a wall, the velocity of a 0.4 KgKg ball changes from 25 m/sm/s towards the vall to 12 m/sm/s away from the wall. If the time the ball was in contact with the call was 0.5 secsec , what was the magnitude of the avarage force applied to the ball
In straight line motion, if the velocity of an object is changing at a constant rate, then its position is _________ and its acceleration is___________: O changing: zero O changing; changing O constant and non-zero; constant and non-zero O None of the above
The girlfriend of a PHS1282 student proposes to him and offers him a "golden" ring in the process. However, his girlfriend is a student in the Department of Accountancy and Finance, and would struggle to afford a gold ring. Additionally she is known to have a slightly dodgy character. After initially being flattered by the marriage proposal he therefore gets suspicious about whether the ring is actually made of gold. He therefore bring the ring to the PHS「282 lab and measure its mass to be 2.80± 0.02 g and its volume to be 0.16 ± 0.03 cm3 . Gold has a mass density of 19.3 g/cm3. Could the ring be made of gold? (Explain your answer) . Brass has a mass density of 8.4 g/cm3 to 8.7 g/cm3 (depending on the composition of the alloy). Could the ring be made of brass?
A reducing elbow in a horizontal pipe is used to deflect water flow by an angle θ = 45° from the flow direction while accelerating it. The elbow discharges water into the atmosphere. The cross- sectional area of the elbow is 150 cm2 at the inlet and 25 cm2 at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. The mass of the elbow and the water in it is 50 kg. Determine the anchoring force needed to hold the elbow in place. Take the momentum flux correction factor to be 1.03 at both the inlet and outlet.
insulator allows the electric current to pass through it true or false please anyone please please please​

A physics cart has a projectile launcher mounted on top. While traveling on a straight track at 0.500 m/s, a projectile is fired. It lands back in the same place on top of the launcher after the cart has moved a distance of 2.30 m. In the frame of reference of the cart, (a) at what angle was the projectile fired and (b) what was the initial velocity of the projectile? (c) What is the shape of the projectile as seen by an observer on the cart? A physics student is watching the demonstration from a classroom seat. According to the student, (d) what is the shape of the projectile’s path, and (e) what is its initial velocity?

Answers

Answer:

(a) 90^(\circ)

(b) Initial velocity of the projectile is 22.54 m/s

(c) Straight line perpendicular to the plane of the car's motion

(d) Parabolic

(e) The initial velocity is 23.04 m/s

Solution:

As per the question:

Velocity of the cart, v = 0.500 m/s

Distance moved by the cart, d = 2.30 m

Now,

(a) The projectile must be fired at an angle of 90^(\circ) so that it mounts on the top of the cart moving with constant velocity.

(b) Now, for initial velocity, u':

Time of flight is given by;

T = (D)/(v)                    (1)

where

T = Flight time

D = Distance covered

(b) The component of velocity w.r.t an observer:

Horizontal component, v_(x) = u'cos\theta

Vertical component, v_(y) = u'sin\theta - gT

Also, the vertical component of velocity at maximum height is zero, v_(y) = 0

Therefore, T = (u')/(g)      

Total flight time, (2u')/(g)                (2)

Now, from eqn (1) and (2):

u' = (gD)/(2v)

u' = (9.8* 2.30)/(2* 0.500) = 22.54 m/s  

(c) The shape of the projectile w.r.t an observer will be a straight line perpendicular to the plane of cart's motion.

(d) The shape of the path of the projectile seen by the physics student outside the reference frame of the cart is parabolic

(e) The initial velocity  is given by:

u = u' + v = 22.54 + 0.5 = 23.04 m/s

A cord is used to vertically lower an initially stationary block of mass M = 3.6 kg at a constant downward acceleration of g/7. When the block has fallen a distance d = 4.2 m, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note : Take the downward direction positive)

Answers

Answer:

a)  W₁ = - 127 J, b) W₂ = 148.18 J, c)   v_(f)= 3.43 m/s  and d)  v_(f) = 3.43 m / s

Explanation:

The work is given the equation

         W = F. d

Where the bold indicates vectors, we can also write this expression take the module of each element and the angle between them

        W = F d cos θ

They give us displacement, let's use Newton's second law to find strength, like the block has an equal acceleration (a = g / 7). We take a positive sign down as indicated

       W-T = m a

       T = W -m a

       T = mg -mg/7

       T = mg 6/7

       T = 3.6 9.8 6/7

       T = 30.24 N

Now we can apply the work equation to our problem

a) the force of the cord is directed upwards, the displacement is downwards, so there is a 180º angle between the two

      W₁ = F d cos θ

      W₁ = 30.24 4.2 cos 180

      W₁ = - 127 J

b) the force of gravity is directed downwards and the displacement is directed downwards, the angle between the two is zero (T = 0º)

      W₂ = (mg) d cos 0º

      W₂ = 3.6 9.8 4.2

      W₂ = 148.18 J

c) kinetic energy

      K = ½ m v²

Let's calculate speed with kinematics

    v_(f)² = vo² + 2 a y

    v₀ = 0

    a = g / 7

     v_(f)² = 2g / 7 y

      v_(f) = √ (2 9.8 4.2 / 7)

      v_(f)= 3.43 m/s

We calculate

     K = ½  3.6  3.43²

     K = 21.18 J

d) the speed of the block and we calculate it in the previous part

       v_(f) = 3.43 m / s

A typical sugar cube has an edge length of 1 cm. If you had a cubical box that contained a mole of sugar cubes, what would its edge length be? (One mole = 6.02 ✕ 1023 units.)

Answers

Since volume of each cube is 1 cm^3 
Then we can get the 
volume of 1 mole of cubes, which is 1 * 6.02 * 10^23 cm^3
The edge edge = v^1/3
And the new adge that  we are looking for: new edge = (6.02*10^23)^1/3== 1.8191 * 46415888.336 = 84435142.472
So, the final soution for the edge length of cube  is 844km.

Do hope it helps! 
Regards.

We can calculate the force that the atmospheric pressure produces on a surface. Consider a living room that has a 4.0m×5.0m floor and a ceiling 3.0m high. What is the total force on the floor due to the air above the surface if the air pressure is 1.00 atm?

Answers

Answer:

Force, F=2.02* 10^6\ N

Explanation:

It is given that,

Length of the room, l = 4 m

breadth of the room, b = 5 m

Height of the room, h = 3 m

Atmospheric pressure, P=1\ atm=101325\ Pa

We know that the force acting per unit area is called pressure exerted. Its formula is given by :

P=(F)/(A)

F=P* l* b

F=101325* 4* 5

F=2.02* 10^6\ N

So, the total force on the floor due to the air above the surface is 2.02* 10^6\ N. Hence, this is the required solution.

Find the linear velocity of a point moving with uniform circular motion, if the point covers a distance s in the given amount of time t. s

Answers

Answer:

The linear velocity is represented by the following expression: v = (s)/(t)

Explanation:

From Rotation Physics we know that linear velocity of a point moving with uniform circular motion is:

v = r\cdot \omega(Eq. 1)

Where:

r - Radius of rotation of the particle, measured in meters.

\omega - Angular velocity, measured in radians per second.

v - Linear velocity of the point, measured in meters per second.

But we know that angular velocity is also equal to:

\omega = (\theta)/(t)(Eq. 2)

Where:

\theta - Angular displacement, measured in radians.

t - Time, measured in seconds.

By applying (Eq. 2) in (Eq. 1) we get that:

v = (r\cdot \theta)/(t)(Eq. 3)

From Geometry we must remember that circular arc (s), measured in meters, is represented by:

s = r\cdot \theta

v = (s)/(t)

The linear velocity is represented by the following expression: v = (s)/(t)

A cylinder with a diameter of 2.0 in. and height of 3 in. solidifies in 3 minutes in a sand casting operation. What is the solidification time if the cylinder height is doubled? What is the time if the diameter is doubled?

Answers

Answer:

3 min 55 sec is the solidification time if the cylinder height is doubled

7min 40 sec if the diameter is doubled

Explanation:

see the attachment

Other Questions
Classical mechanics is an extremely well tested model. Hundreds of years worth of experiments, as well as most feats of engineering, have verified its validity. If special relativity gave very different predictions than classical physics in everyday situations, it would be directly contradicted by this mountain of evidence. In this problem, you will see how some of the usual laws of classical mechanics can be obtained from special relativity by simply assuming that the speeds involved are small compared to the speed of light.Two of the most surprising results of special relativity are time dilation and length contraction, namely, that measured intervals in time and space are not absolute quantities but instead appear differently to different observers. The equations for time dilation and length contraction can be written t=?t0 and l=l0/?, where?=11?u2c2?.Part AFind the first two terms of the binomial expansion for ?.Express your answer in terms of u and c.Hints? = 1+12(uc)2 … SubmitMy AnswersGive UpCorrectYou can see that ??1 if u?c, as is the case in most situations. If you set ?=1 in the equations for time dilation and length contraction you recover the equations of classical physics, which state essentially that there is no time dilation or length contraction. Therefore, we don't see any appreciable length contraction or time dilation in everyday life.Part BConsider a case involving a speed that is fast compared to those encountered in our everyday life: a spy plane moving at 1500m/s. Find the deviation from classical physics (??1) that relativity predicts at this speed. Use only the first two terms of the binomial expansion, as your calculator may not be able to handle the necessary number of digits otherwise.Express your answer to four significant figures.??1 = 1.250×10?11SubmitMy AnswersGive UpCorrectIf you lived for 70 years in such a spy plane moving at 1500m/s, this would amount to about 28ms of cumulative time difference between you and people who lived at rest relative to the earth when you finally landed. Thus, it is not surprising that relativistic effects are not observed in everyday life, or even at the fringes of everyday life. By using atomic clocks, which can measure time accurately to one part in 1013 or better, the time dilation at the normal speed for an airliner has been verified.Part CNow, consider the relativistic velocity addition formula:speed=v+u1+vuc2.If v=u=0.01c=1% of c, what is the relativistic sum of the two speeds?Express your answer as a percentage of the speed of light to five significant figures.