As you take the stoppered part of the tube up the staircase you begin to see the water level drop around the 4th floor. As you continue up it does not continue up with you but stays at a constant level. What does that mean?a. The pressure in the tubing is equal to the barometric pressure.
b. The tubing was unable to supply any more water to the tube for use.
c. The pressure outside the tube is higher that the water pressure inside the tube.

Answers

Answer 1
Answer:

Answer:

a. The pressure in the tubing is equal to the barometric pressure.

Explanation:

Since in the question it is mentioned that the if you take the stoppert part of the tube than the level of warer would be fall approx 4th floor and if it is continued than it wont be continue but remains constant.

Now here first we do that the tube i.e. connected to the bucket should be taken up. In the first instance, the bucket supplies the water to the tube but it would not increased far away to the level of the barometric pressure

Hence, the correct option is a.


Related Questions

How many hours does earth take to complete one rotation?
The graph below shows the velocity of a car as it attempts to set a speedrecord.Velocity vs. Time140013001200110010004 4531 (s)At what point is the car the fastest?A. t = 1.0 sB. t = 4.2 sC. t = 3.0 sD. t = 4.5 s
The surface pressure of the atmosphere is about 14.7 psi (pounds per square inch). How many pounds per square yard does that amount to
What is the medium through which the wave is moving?
Select the correct answer.If the coefficient of static friction is 0.35 and the normal force is 80 newtons, what is the maximum frictional force of the surface acting on the object? O A. B. C. OD. OE 9.8 newtons 28 newtons 80 newtons 23 newtons 35 newtons

What happens to a black body radiator as it increases in temperature? A. it gives off a range of electromagnetic radiation of shorter wavelengths.
B. It gives off only one wavelength of electromagnetic radiation
C. It releases only ultraviolet waves of electromagnetic radiation
D. It becomes hotter but gives off less electromagnetic radiation

Answers

The black body radiator as it increases in temperature gives off a range of electromagnetic radiation of shorter wavelengths so, the option A is correct.

What is radiation?

Radiation is the movement of atomic and subatomic particles as well as waves, such as those that define X-rays, heat rays, and light rays. Radiation of both types, from cosmic and earthly sources, is constantly being thrown at all matter.

The characteristics and behavior of radiation, as well as the matter it interacts with, are outlined in this article, which also explains how energy is transferred from radiation to its surroundings.

The effects of such an energy transfer to living matter, including the typical effects on numerous biological processes, are given a great deal of attention (e.g., photosynthesis in plants and vision in animals).

Thus, the black body radiator gives off a range of electromagnetic radiation of shorter wavelengths.

To know more about radiation:

brainly.com/question/29333363

#SPJ2

Answer: A

Explanation:

Answer is a hope this helps guys!

A round pipe of varying diameter carries petroleum from a wellhead to a refinery. At the wellhead, the pipe's diameter is 58.9 cm ( 0.589 m) and the flow speed of the petroleum is 12.1 m/s. At the refinery, the petroleum flows at 6.29 m/s. What is the volume flow rate of the petroleum along the pipe and what is the pipe's diameter at the refinery?

Answers

Answer:

Explanation:

The volume rate of flow = a x v where a is cross sectional area of pipe and v is velocity of flow

putting the values

π x .2945² x 12.1

= 3.3  m³ /s

To know the pipe's diameter at the refinery we shall apply the following formula

a₁ v₁ = a₂ v₂

a₁ v₁ and  a₂ v₂ are volume rate of flow of liquid which will be constant .

3.3 = a₂ x 6.29

a₂ = .5246 m³

π x r² = .5246

r = .4087 m

= 40.87 cm

diameter

= 81.74 cm

A popular physics lab involves a hand generator and an assortment of wires with different values of resistance. In the lab, the leads of the generator are connected across each wire in turn. For each wire, students attempt to turn the generator handle at the same constant rate. Students must push harder on the handle when the leads of the generator are connected__________. This is because turning the handle at a given constant rate produces__________ , regardless of what is connected to the leads. So, when turning the handle at a constant rate, lab students must push harder in cases where there is________

Answers

Answer:

Explanation:

Students must push harder on the handle when the leads of the generator are connected across the wire with the lowest resistance.

This is because turning the handle at a given constant rate produces a constant voltage across the leads, regardless of what is connected to the leads.

So, when turning the handle at a constant rate, lab students must push harder in case where there is a greater current through the connected wire.

An internal explosion breaks an object, initially at rest,intotwo pieces, one of which has 1.5 times the mass of the other.If
7500 J were released in the explosion, how much kinetic energydid
each piece acquire?

Answers

Answer:

4500 J and 3000 J

Explanation:

According to conservation of momentum

      0 = m_1 V_1 + m_2 V_2

Given that m_2 = 1.5 m_1 , so

    V_1 = -1.5 V_2

  the kinetic energy of each piece is

    K_2= (1)/(2) m_2v_2^2

    K_1= (1)/(2) m_1v_1^2

substituting the value of V1 in the above equation

    K_1 = (1/2)( m_2 / 1.5 )( -1.5 V_2)^2 = 1.5 (1/2)m_2 V_2^2 = 1.5 K_2

  Given that

         K_1 + k_2 = 7500 J

       1.5 K_2 + K_2 = 7500

         K_2 = 7500 / 2.5

               = 3000 J

this is the KE of heavier mass

      K_1 = 7500 - 3000 = 4500 J

this is the KE of lighter mass

Final answer:

The question is about finding the kinetic energy acquired by each of two pieces of an object following an internal explosion, using principles of conservation of energy and momentum in physics.

Explanation:

The student has asked about an internal explosion that breaks an object into two pieces with different masses, releasing a certain amount of kinetic energy in the process. This question involves applying the principle of conservation of energy and momentum to find the kinetic energy acquired by each piece post-explosion.

Assuming piece 1 has a mass of m and piece 2 has a mass of 1.5m, the total mass of the system is 2.5m. Since 7500 J of energy was released in the explosion, to find the kinetic energy of each piece, we can use the fact that the total kinetic energy is equal to the energy released during the explosion. Let the kinetic energy of the smaller piece be K1 and of the larger piece be K2. Because the object was initially at rest and momentum must be conserved, the momenta of the two pieces must be equal and opposite. This relationship allows us to derive the ratio of the kinetic energies. We can solve for K1 and K2 proportionally. Finally, because the kinetic energy is a scalar quantity, adding the kinetic energies of the two pieces will equal the total energy released.

Learn more about Kinetic Energy Acquisition here:

brainly.com/question/28545352

#SPJ3

Part A (4 pts) Consider light of wavelength λ = 670nm traveling in air. The light is incident at normal incidence upon a thin film of oil with n2 =1.75. On the other side of the thin film is glass with n3 =1.5. What is the minimum non-zero value of the film thickness d that will cause the reflections from both sides of the film to interfere constructively?

Answers

Answer:

Explanation:

On both sides of the film , the mediums have lower refractive index.

for interfering pattern from above , for constructive interference of reflected wave from both sides of the film , the condition is

2μt = ( 2n +1 ) λ / 2

μ is refractive index of film ,t is thickness of film λ is wavelength of light

n is order of fringe

for minimum thickness

n = 0

2μt =  λ / 2

t =  λ / 4μ

= 670 / 1.75 x 4

= 95.71 nm .

A water slide is constructed so that swimmers, starting from rest at the top of the slide, leave the end of the slide traveling horizontally. One person hits the water 5.00 m from the end of the slide in a time of 0.504 s after leaving the slide. Ignore friction and air resistance. Find the height H.

Answers

Answer:

4.93 m

Explanation:

According to the question, the computation of the height is shown below:

But before that first we need to find out the speed which is shown below:

As we know that

Speed = (Distance)/(Time)

Speed = (5)/(0.504)

= 9.92 m/s

Now

v^2 - u^2 = 2* g* h

9.92^2 = 2* 9.98 * h

98.4064 = 19.96 × height

So, the height is 4.93 m

We simply applied the above formulas so that the height i.e H could arrive

Final answer:

The height of the water slide is 5.04 meters.

Explanation:

The problem described in this question involves a water slide, where swimmers start from rest at the top and leave the slide traveling horizontally. To determine the height of the slide, we can use the equations of motion in the horizontal direction. The horizontal displacement (x) is given as 5.00 m and the time (t) is given as 0.504 s. Assuming no friction or air resistance, we can use the equation x = v*t, where v is the horizontal velocity. Rearranging the equation, we can solve for v, which is equal to x/t. Substituting the given values, we have v = 5.00 m / 0.504 s = 9.92 m/s. The horizontal velocity (v) is constant throughout the motion, so we can use the equation v = sqrt(2*g*H), where g is the acceleration due to gravity (9.8 m/s^2) and H is the height of the slide. Rearranging the equation, we can solve for H, which is equal to v^2 / (2*g). Substituting the known values, we have H = (9.92 m/s)^2 / (2*9.8 m/s^2) = 5.04 m.