Answer:
a. The pressure in the tubing is equal to the barometric pressure.
Explanation:
Since in the question it is mentioned that the if you take the stoppert part of the tube than the level of warer would be fall approx 4th floor and if it is continued than it wont be continue but remains constant.
Now here first we do that the tube i.e. connected to the bucket should be taken up. In the first instance, the bucket supplies the water to the tube but it would not increased far away to the level of the barometric pressure
Hence, the correct option is a.
B. It gives off only one wavelength of electromagnetic radiation
C. It releases only ultraviolet waves of electromagnetic radiation
D. It becomes hotter but gives off less electromagnetic radiation
The black body radiator as it increases in temperature gives off a range of electromagnetic radiation of shorter wavelengths so, the option A is correct.
Radiation is the movement of atomic and subatomic particles as well as waves, such as those that define X-rays, heat rays, and light rays. Radiation of both types, from cosmic and earthly sources, is constantly being thrown at all matter.
The characteristics and behavior of radiation, as well as the matter it interacts with, are outlined in this article, which also explains how energy is transferred from radiation to its surroundings.
The effects of such an energy transfer to living matter, including the typical effects on numerous biological processes, are given a great deal of attention (e.g., photosynthesis in plants and vision in animals).
Thus, the black body radiator gives off a range of electromagnetic radiation of shorter wavelengths.
To know more about radiation:
#SPJ2
Answer: A
Explanation:
Answer is a hope this helps guys!
Answer:
Explanation:
The volume rate of flow = a x v where a is cross sectional area of pipe and v is velocity of flow
putting the values
π x .2945² x 12.1
= 3.3 m³ /s
To know the pipe's diameter at the refinery we shall apply the following formula
a₁ v₁ = a₂ v₂
a₁ v₁ and a₂ v₂ are volume rate of flow of liquid which will be constant .
3.3 = a₂ x 6.29
a₂ = .5246 m³
π x r² = .5246
r = .4087 m
= 40.87 cm
diameter
= 81.74 cm
Answer:
Explanation:
Students must push harder on the handle when the leads of the generator are connected across the wire with the lowest resistance.
This is because turning the handle at a given constant rate produces a constant voltage across the leads, regardless of what is connected to the leads.
So, when turning the handle at a constant rate, lab students must push harder in case where there is a greater current through the connected wire.
7500 J were released in the explosion, how much kinetic energydid
each piece acquire?
Answer:
4500 J and 3000 J
Explanation:
According to conservation of momentum
Given that m_2 = 1.5 m_1 , so
the kinetic energy of each piece is
substituting the value of V1 in the above equation
Given that
K_1 + k_2 = 7500 J
1.5 K_2 + K_2 = 7500
K_2 = 7500 / 2.5
= 3000 J
this is the KE of heavier mass
K_1 = 7500 - 3000 = 4500 J
this is the KE of lighter mass
The question is about finding the kinetic energy acquired by each of two pieces of an object following an internal explosion, using principles of conservation of energy and momentum in physics.
The student has asked about an internal explosion that breaks an object into two pieces with different masses, releasing a certain amount of kinetic energy in the process. This question involves applying the principle of conservation of energy and momentum to find the kinetic energy acquired by each piece post-explosion.
Assuming piece 1 has a mass of m and piece 2 has a mass of 1.5m, the total mass of the system is 2.5m. Since 7500 J of energy was released in the explosion, to find the kinetic energy of each piece, we can use the fact that the total kinetic energy is equal to the energy released during the explosion. Let the kinetic energy of the smaller piece be K1 and of the larger piece be K2. Because the object was initially at rest and momentum must be conserved, the momenta of the two pieces must be equal and opposite. This relationship allows us to derive the ratio of the kinetic energies. We can solve for K1 and K2 proportionally. Finally, because the kinetic energy is a scalar quantity, adding the kinetic energies of the two pieces will equal the total energy released.
#SPJ3
Answer:
Explanation:
On both sides of the film , the mediums have lower refractive index.
for interfering pattern from above , for constructive interference of reflected wave from both sides of the film , the condition is
2μt = ( 2n +1 ) λ / 2
μ is refractive index of film ,t is thickness of film λ is wavelength of light
n is order of fringe
for minimum thickness
n = 0
2μt = λ / 2
t = λ / 4μ
= 670 / 1.75 x 4
= 95.71 nm .
Answer:
4.93 m
Explanation:
According to the question, the computation of the height is shown below:
But before that first we need to find out the speed which is shown below:
As we know that
= 9.92 m/s
Now
98.4064 = 19.96 × height
So, the height is 4.93 m
We simply applied the above formulas so that the height i.e H could arrive
The height of the water slide is 5.04 meters.
The problem described in this question involves a water slide, where swimmers start from rest at the top and leave the slide traveling horizontally. To determine the height of the slide, we can use the equations of motion in the horizontal direction. The horizontal displacement (x) is given as 5.00 m and the time (t) is given as 0.504 s. Assuming no friction or air resistance, we can use the equation x = v*t, where v is the horizontal velocity. Rearranging the equation, we can solve for v, which is equal to x/t. Substituting the given values, we have v = 5.00 m / 0.504 s = 9.92 m/s. The horizontal velocity (v) is constant throughout the motion, so we can use the equation v = sqrt(2*g*H), where g is the acceleration due to gravity (9.8 m/s^2) and H is the height of the slide. Rearranging the equation, we can solve for H, which is equal to v^2 / (2*g). Substituting the known values, we have H = (9.92 m/s)^2 / (2*9.8 m/s^2) = 5.04 m.