11.
A current of 67 amps runs through a resistor of 37 ohms, how much voltage is lost?

Answers

Answer 1
Answer: You divide them. 67/37 is 1.5 and so you subtract it with the 67 and multiple it by the coherent integer from the multiplication and you would get 20 volts lost roughly.

Answer: 20 volts

Related Questions

A dentist causes the bit of a high-speed drill to accelerate from an angular speed of 1.72 x 10^4 rad/s to an angular speed of 5.42 x 10^4 rad/s. In the process, the bit turns through 1.72 x 10^4 rad. Assuming a constant angular acceleration, how long would it take the bit to reach its maximum speed of 8.42 x 10^4 rad/s, starting from rest?
A T-junction combines hot and cold water streams ( = 62.4 lbm/ft3 , cp = 1.0 Btu/lbm-R). The temperatures are measured to be T1 = 50 F, T2 = 120 F at the inlets and T3 = 80 F at the exit. The pipe diameters are d1 = d3 = 2" Sch 40 and d2 = 1¼" Sch 40. If the velocity at inlet 1 is 3 ft/s what is the mass flow rate at inlet 2? (3.27 kg/s)?
Find a glass jar with a screw-top metal lid. Close the lid snugly and put the jar into the refrigerator. Leave it there for about 10 minutes and then take the jar out and try to open the lid. (a) Did the lid become tighter or looser? Explain your observation.
Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 2 seconds.
Write down the DE of motion of a particle moving under the influence of gravity and experiencing a resistive force. .

Convert 7 (gcm^2)/(min^2) into a value in standard S.I. units. Be sure to use scientific notation if necessary. You do not need to answer units.

Answers

The required value is required in SI units.

The required answer is 1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

SI units

The SI unit of mass, length and time is kg, m and s respectively.

In order to convert one unit into another it has to be multiplied or divided by the conversion factors.

A definite magnitude which has some quantity which is defined by convention or law is called a unit.

The conversion factors are

1\ \text{g}=10^(-3)\ \text{kg}

1\ \text{cm}=10^(-2)\ \text{m}

1\ \text{cm}^2=10^(-4)\ \text{m}^2

1 min = 60 s

1\ \text{min}^2=60*60\ \text{s}^2

So,

7\ \text{g cm}^2/\text{min}^2=7* (10^(-3)* 10^(-4))/(60* 60)\n =1.94*10^(-10)\ \text{kg m}^2/\text{s}^2

Learn more about SI units:

brainly.com/question/16393390

Hi hi hi hi hi hi hi

A stock person at the local grocery store has a job consisting of the following five segments:1) picking up boxes of tomatoes from the stockroom floor

2)accelerating to a comfortable speed.

3) Carring the boxes to the tomato display at constant speed.

4)decelerating to a stop.

5) lowering the boxes slowly to the floor.

During which of the five segments of the job does the stock person do positive work on the boxes?

A) (2) and (3)

B(1) and (2)

C) (1) only

D) (1), (2), (4) and (5)

E) (1) and (5)

Answers

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

The inner and outer surfaces of a cell membrane carry a negative and positive charge, respectively. Because of these charges, a potential difference of about 0.078 V exists across the membrane. The thickness of the membrane is 7.1 x 10-9 m. What is the magnitude of the electric field in the membrane?

Answers

Answer:

10.99* 10^6\ V/m

Explanation:

Given:

Potential difference across the membrane (ΔV) = 0.078 V

Thickness of the membrane (Δx) = 7.1 × 10⁻⁹ m

Magnitude of electric field (|E|) = ?

We know that, the electric field due to a potential difference (ΔV) across a distance of Δx is given as:

E=-(\Delta V)/(\Delta x)

So, the magnitude of the electric field is calculated by ignoring the negative sign and thus is given as:

|E|=(\Delta V)/(\Delta x)

Plug in the given values and solve for '|E|'. This gives,

|E|=(0.078\ V)/(7.1* 10^(-9)\ m)\n\n|E|=10.99* 10^6\ V/m

Therefore, the magnitude of the electric field in the membrane is 10.99* 10^6\ V/m.

You are given a parallel plate capacitor with plates having a rectangular area of 16.4 cm2 and a separation of 2.2 mm. The space between the plates is filled with a material having a dielectric constant κ = 2.0.Find the capacitance of this system

Answers

Answer: C = 1.319×10^-11 F

Explanation: The formulae that relates the capacitance of a capacitor to the area of the plates, distance between the plates and dielectric constant is given as

C = kε0A/d

Where C = capacitance of plates =?

k = dielectric constant = 2.0

Area of plates = 16.4cm² = 0.00164 m²

d = distance between plates = 2.2 mm = 0.0022m

By substituting the parameters, we have that

C = 2 × 8.85×10 ^-12 ×0.00164/ 0.0022

C = 0.029028 × 10^-12/ 0.0022

C = 13.19× 10^-12

C = 1.319×10^-11 F

Label the longitudinal wave

Answers

Answer:

???

Explanation:

What is the medium through which the wave is moving?

Answers

Answer:

STRING held by the man

Explanation:

Wave is defined as a disturbance that travels through a MEDIUM and transfer energy from one point to another without causing any permanent displacement of the medium itself.

The medium through which wave travels varies e.g water, string, air etc

According to the diagram, wave travels through the string held by the man. This string is referred to as the MEDIUM through which the wave moves. The wave generated produces both crest (D) and trough (C) when displaced from its initial position (A)

Rope or one could consider it to be C to B or A to D