Answer:Reducing mass i.e. water
Explanation:
Frequency For given mass in glass is given by
where k =stiffness of the glass
m=mass of water in glass
from the above expression we can see that if mass is inversely Proportional to frequency
thus reducing mass we can increase frequency
Answer:
Explanation:
Given data
time=0.19 s
distance=1.6 m
To find
height
Solution
First we need to find average velocity
Also we know that average velocity
Where
Vi is top of window speed
Vf is bottom of window speed
Also we now that
Substitute value of Vf in average velocity
So
Vi is speed of balloon at top of the window
Now we need to find time
So
So the distance can be found as
Answer: The magnitude of torque is 38.7Nm
Explanation: Please see the attachment below
The magnitude of the torque on the door about its h1nges due to the applied force is 38.7 Nm.
The magnitude of the torque on the door about its h1nges due to the applied force is calculated by applying the following formula as shown below;
τ = rF
where;
The given parameters include;
perpendicular distance, r = 86 cm = 0.86 m
the applied force , F = 45 N
The magnitude of the torque on the door about its h1nges due to the applied force is calculated as;
τ = rF
τ = 0.86 m x 45 N
τ = 38.7 Nm
Learn more about torque here: brainly.com/question/30338159
#SPJ3
Answer:
The correct answer is d. tension pneumothorax.
Explanation:
The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.
2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?
3) For the conditions, how long does it take for her to reach the opposite bank?
Answer:
1)
2)
3)
Explanation:
Given:
width of river,
speed of stream with respect to the ground,
speed of the swimmer with respect to water,
Now the resultant of the two velocities perpendicular to each other:
Now the angle of the resultant velocity form the vertical:
so,
Now the distance swept downward:
2)
On swimming 37° upstream:
The velocity component of stream cancelled by the swimmer:
Now the net effective speed of stream sweeping the swimmer:
The component of swimmer's velocity heading directly towards the opposite bank:
Now the angle of the resultant velocity of the swimmer from the normal to the stream:
Now the distance swept downstream:
3)
Time taken in crossing the rive in case 1:
Time taken in crossing the rive in case 2:
acceleration of the ball?
Answer:
-54,200 m/s^2
Explanation:
a=(vf-vi)/t
Answer:
μ = 0.423
Explanation:
To solve this exercise we must use Newton's second law and kinematics together, let's start using expressions of kinematics to find the acceleration of the body
Let's fix a reference system where the x axis is parallel to the inclined plane, but the acceleration is only on this axis
x = v₀ t + ½ a t²
The body starts from rest so its initial speed is zero
a = 2 x / t²
a = 2 0.5 /0.5²
a = 4 m / s²
Taking the acceleration of the body, we use Newton's second law, we take the direction up the plane as positive
X axis
fr - Wₓ = m a (1)
Y Axis
N- = 0
N = W_{y}
We use trigonometry to find the components of the weight
sin 45 = Wₓ / W
cos 45 = W_{y} / W
Wₓ = W sin 45
W_{y} = W cos 45
The out of touch has the expression
fr = μ N
fr = μ W_{y}
We substitute in 1
μ mg cos 45 - mg sin 45 = m a
W_{y} = (a + g sin 45) / g cos 45
μ = a / g cos 45 + 1
We calculate
Acceleration goes down the plane, so it is negative
a = -4 m / s²
μ = 1- 4 / (9.8 cos 45)
μ = 0.423
Answer:
The μ = 0.422
Explanation:
The distance travelled by the mass is equal to:
The sum of forces in y-direction equals zero:
∑Fy = 0
N - (m * g * cosθ) = 0
N - (1 * 9.8 * cos45) = 0
N = 6.93 N
The sum of forces in x-direction is equal to:
∑Fx = ma
(m * g * sinθ) - fk = m * a
(1 * 9.8 * sin45) - fk = 1 * 4
fk = 2.93 N
fk = μ * N
2.93 = μ * 6.93
μ = 0.422