The question involves computation of frequency, intensity, Poynting vector and electric field of an electromagnetic wave, and comparison between two such waves. The solutions result in approximately: 10 GHz for frequency, 3.07 x 10^-12 W/m^2 for intensity, 1.3 X 10^-19 W/m^2 for the z-component of Poynting vector, and 1.43 V/m for the electric field. Moreover, the comparison yields that SIIz is less than zero and not equal to Sz in magnitude.
The subject of your question relates to
electromagnetic waves
and their properties such as frequency, intensity, Poynting vector, and the electric field component. These concepts belong to the realm of physics, and more specifically, are topics in the study of electromagnetic theory.
To solve your questions:
#SPJ12
The frequency of the wave is 10 GHz. While we can't expressly calculate the intesity, Sz, and Ex without more information, we can note that if the signs of Bx and By are swapped in a new wave, the Poynting vector would be flipped, hence SIIz would be negative and of equal magnitude to Sz.
An electromagnetic wave propagating through vacuum is described by certain electromagnetic fields which are associated with frequency, intensity, and Poynting vector which indicates the direction of energy flow. These can be calculated using certain formulas derived from wave equations.
Frequency can be acquired from the wavelength (λ) with the formula: f = c/λ, where c is the speed of light in vacuum. Using given λ = 3 cm, we get f = 10^10 Hz or 10 GHz.
The total Intensity (I) can be calculated as the average of the sum of the intensities in the x and y direction, given by: 1/2 ε_0 c E^2, where ε_0 is the permittivity of free-space and E is the electric field amplitude. However, more information might be needed to calculate this value. Similarly, without further information, we cannot calculate the exact values of Sz and Ex.
When comparing Sz and SIIz, if the signs of Bx and By are swapped in a new wave, this would flip the direction of the Poynting vector (since it is related to E × B), hence SIIz < 0 and its magnitude would still equal to Sz because the magnitudes of Bx and By do not change.
#SPJ11
Answer:
Δ = 84 Ω, = (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 / = ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 / = 1 / R₁ + 1 / R₂
1 / = 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ / = ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ / 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ / 400 = 0.1 + 0.05 + 0.06
Δ = 0.21 400
Δ = 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω
Answer:
The resultant vector is given by .
Explanation:
Let and , both measured in meters. The resultant vector is calculated by sum of components. That is:
(Eq. 1)
The resultant vector is given by .
Explanation:
The reason for the more concentration of carbon dioxide in the atmosphere of Venus than in the Earth -
On the Earth , most amount of the carbon dioxide is in the ocean water and in sea sediments .
Considering Venus , in the planet Venus , there is no Ocean water , hence , carbon dioxide can not get dissolved into the water , hence , it is found in the atmosphere .
So , the escape velocity for carbon dioxide on Mars is smaller than Venus .
Answer:
Explanation:
Let the bigger crate be in touch with the ground which is friction less. In the first case both m₁ and m₂ will move with common acceleration because m₁ is not sliding over m₂.
1 ) Common acceleration a = force / total mass
= 234 / ( 25 +91 )
= 2.017 m s⁻².
2 ) Force on m₁ accelerating it , which is nothing but friction force on it by m₂
= mass x acceleration
= 25 x 2.017
= 50.425 N
The same force will be applied by m₁ on m₂ as friction force which will act in opposite direction.
3 ) Maximum friction force that is possible between m₁ and m₂
= μ_s m₁g
= .79 x 25 x 9.8
= 193.55 N
Acceleration of m₁
= 193 .55 / 25
= 7.742 m s⁻²
This is the common acceleration in case of maximum tension required
So tension in rope
= ( 25 +91 ) x 7.742
= 898 N
4 ) In case of upper crate sliding on m₂ , maximum friction force on m₁
= μ_k m₁g
= .62 x 25 x 9.8
= 151.9 N
Acceleration of m₁
= 151.9 / 25
= 6.076 m s⁻².
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;
k = 1.4
Work done is given as;
inlet velocity is negligible;
Therefore, the exit velocity is 629.41 m/s
Thank you!
Answer:
Torques must balance
F1 * X1 = F2 * Y2
or M1 g X1 = M2 g X2
X2 = M1 / M2 * X1 = 130.4 / 62.3 * 10.7
X2 = 22.4 cm
Torque = F1 * X2 =
62.3 gm* 980 cm/sec^2 * 22.4 cm = 137,000 gm cm^2 / sec^2
Normally x cross y will be out of the page
r X F for F1 will be into the page so the torque must be negative