A construction foreman exerts 1300 Newtons of force trying to move a 1200-kg block of concrete. How many Joules of work does he perform?

Answers

Answer 1
Answer: He does no work until the block starts to move ... an unlikely event.

If it ever does move, then the work he does is

                   (1300) x (the distance the block moves, in meters) .

The unit is 'joules.

Related Questions

n Section 12.3 it was mentioned that temperatures are often measured with electrical resistance thermometers made of platinum wire. Suppose that the resistance of a platinum resistance thermometer is 125 Ω when its temperature is 20.0°C. The wire is then immersed in boiling chlorine, and the resistance drops to 99.6 Ω. The temperature coefficient of resistivity of platinum is α = 3.72 × 10−3(C°)−1. What is the temperature of the boiling chlorine?
The pressure in a section of horizontal pipe with a diameter of 2.5 cm is 139 kPa. Water ï¬ows through the pipe at 2.9 L/s. If the pressure at a certain point is to be reduced to 101 kPa by constricting a section of the pipe, what should be the diameter of the constricted section? The acceleration of gravity is 9.81 m/s2 . Assume laminar nonviscous ï¬ow.
In this example we will use pendulum motion to actually measure the acceleration of gravity on a different planet. An astronaut on the surface of Mars measures the frequency of oscillation of a simple pendulum consisting of a ball on the end of a string. He finds that the pendulum oscillates with a period of 1.5 s. But the acceleration due to gravity on Mars is less than that on earth, gMars=0.38gearth. Later, during a journey to another planet, the astronaut finds that his simple pendulum oscillates with a period of 0.92 s. What planet is he now on?SOLUTIONSET UP Each planet has a different value of the gravitational acceleration g near its surface. The astronaut can measure g at his location, and from this he can determine what planet he's on. First we use the information about Mars to find the length L of the string that the astronaut is swinging. Then we use that length to find the acceleration due to gravity on the unknown planet.
A 1200-kg cannon suddenly fires a 100-kg cannonball at 35 m/s. what is the recoil speed of the cannon? assume that frictional forces are negligible and the cannon is fired horizontally.
A commercial aircraft is flying westbound east of the Sierra Nevada Mountains in California. The pilot observes billow clouds near the same altitude as the aircraft to the south, and immediately turns on the "fasten seat belt" sign. Explain why the aircraft experiences an abrupt loss of 500 meters of altitude a short time later.

A nearsighted person has a far point of 40cm. What power spectacle lens is needed if the lens is 2cm from the eye

Answers

Answer:

The value is p =   - 2.63 \ Diopters

Explanation:

From the question we are told that  

      The value of the far point is  a =  40 \ cm  =  0.4 \  m

      The distance of the lens to the eye is  b =  2 \ cm = 0.02

Generally

        1 Diopter = >  1 m^(-1)

Generally the power spectacle lens needed is mathematically represented as

           p = (1)/(d_o )  + (1)/(d_i)

Here d_o is the object distance which for a near sighted person is d_o =  \infty

And  d_i is the image distance which is evaluated as

        d_i =  b - a

=>     d_i =  0.02 - 0.4

=>     d_i = -0.38 \  m

So

         p = (1)/(\infty )  + (1)/(-0.38)

=>      p = 0   - 2.63

=>      p =   - 2.63 \ Diopters

In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for F⃗ ? Let U=0 when x=0. Express your answer in terms of α and x.

Answers

Answer

\Delta U= \alpha (x^3)/(3) \n

Explanation:

given

F = -\alpha x^2 i  

where \alpha = 12 N/m^2

now we know

\int\limits^W_0 {} \, dW  = \int\limits^a_b {F.} \, dxi ..................(i)

where dx is infinitesimal distance

W = \int\limits^a_b {-\alpha x^2} \, dx \n  

for x = a and b = 0

after integration we get

W = -\alpha (x^3)/(3)  

we know work done by conservative force will be equals to negative of potential energy

W  = -\Delta U

so we get

-\Delta U= -\alpha (x^3)/(3) \n\n\Delta U= \alpha (x^3)/(3) \n

Two ice skaters, Lilly and John, face each other while at rest, and then push against each other's hands. The mass of John is twice that of Lilly. How do their speeds compare after they push off? Lilly's speed is one-fourth of John's speed. Lilly's speed is the same as John's speed. Lilly's speed is two times John's speed. Lilly's speed is four times John's speed. Lilly's speed is one-half of John's speed.

Answers

Answer:

Lilly's speed is two times John's speed.

Explanation:

m = Mass

a = Acceleration

t = Time taken

u = Initial velocity

v = Final velocity

The force they apply on each other will be equal

F=ma\n\Rightarrow a_l=(F)/(m_l)

F=ma\n\Rightarrow a_j=(F)/(2m_l)\n\Rightarrow a_j=(1)/(2)a_l

v=u+at\n\Rightarrow v_l=0+(F)/(m_l)* t\n\Rightarrow v_l=a_lt

v=u+at\n\Rightarrow v_l=0+(F)/(2m_l)* t\n\Rightarrow v_j=(1)/(2)a_lt\n\Rightarrow v_j=(1)/(2)v_l\n\Rightarrow v_l=2v_j

Hence, Lilly's speed is two times John's speed.

Answer:

Lilly's speed is 2 times Johns speed

Explanation:

A block slides from rest with negligible friction down the track above, descending a vertical height of 5.0 m to point P at the bottom. It then slides on the horizontal surface. The coefficient of friction between the block and the horizontal surface is 0.20. How far does the block slide on the horizontal surface before it comes to rest?

Answers

The block slide on the horizontal surface is "24.99 m" far.

According to the question,

  • Vertical height = 5.0 m
  • Coefficient of friction = 0.20

Let,

  • The time taken be "t".

Now,

s = ut+ (1)/(2) at^2

By substituting the values, we get

  5 = (1)/(2)* 9.8* t^2

  t = 1.01 \ sec

The final velocity will be:

v_1 = gt

       = 9.8* 1.01

       = 9.899 \ m/s

Now,

t = (u)/(a)

     = (9.899)/(0.2* 9.8)

     = 5.05 \ seconds

hence,

The distance will be:

s = ut+0.5* at^2

     = 9.899(5.05)-0.5* (0.2* 9.8* 5.05^2)

     = 24.99 \ m

Thus the above approach is right.

Learn more about friction here:

brainly.com/question/18851133

Answer:

The block slides on the horizontal surface 25 m before coming to rest.

Explanation:

Hi there!

For this problem, we have to use the energy-conservation theorem. Initially, the block has only gravitational potential energy (PE) that can be calculated as follows:

PE = m · g · h

Where:

m = mass of the block.

g = acceleration due to gravity.

h = height at which the block is located.

As the block starts to slide down the track, its height diminishes as well as its potential energy. Due to the conservation of energy, energy can´t disappear, so the loss of potential energy is compensated by an increase of kinetic energy (KE). In other words, as the block slides, the potential energy is converted into kinetic energy. The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

m = mass of the block.

v = speed of the block.

Then, at the bottom of the ramp, the kinetic energy of the block will be equal to the potential energy that the block had at the top of the ramp.

Initial PE = KE at the bottom

When the block starts sliding horizontally, friction force does work to stop the block. According to the energy-work theorem, the change in the kinetic energy of an object is equal to the net work done on that object. In other words, the amount of work needed to stop the block is equal to its kinetic energy. Then, the work done by friction will be equal to the kinetic energy of the block at the bottom, that is equal to the potential energy of the block at the top of the track:

initial PE = KE at the bottom = work done by friction

The work done by friction is calculated as follows:

W = Fr · Δx

Where:

W = work

Fr = friction force.

Δx = traveled distance.

And the friction force is calculated as follows:

Fr = μ · N

Where:

μ = coefficient of friction.

N = normal force.

Since the block is not accelerated in the vertical direction, in this case, the normal force is equal to the weight (w) of the block:

Sum of vertical forces = ∑Fy = N - w = 0 ⇒N = w

And the weight is calculated as follows:

w = m · g

Where m is the mass of the block and g the acceleration due to gravity.

Then, the work done by friction can be expressed as follows:

W = μ · m · g · Δx

Using the equation:

intial PE = work done by friction

m · g · h = μ · m · g · Δx

Solving for Δx

h/μ = Δx

5.0 m / 0.20 = Δx

Δx = 25 m

The block slides on the horizontal surface 25 m before coming to rest.

Twopucksofequalmasscollideonafrictionlesssurface,asillustratedinthefigure.Immediatelyafterthe collision, the speed of the black puck is 1.5 m/s. What is the speed of the white puck immediately after the collision?

Answers

Answer:

The speed of the white puck immediately after the collision is 2.6 m/s.

Explanation:

Given that,

Two pucks are equal masses.

Speed of black puck = 1.5 m/s

According to given figure,

We need to calculate the speed of the white puck immediately after the collision

Using law of conservation of momentum

mv=m_(1)v_(1)\cos\theta+m_(2)v_(2)\cos\theta

Put the value into the formula according to figure

m*3=m* v_(1)*\cos30+m*1.5*\cos60

3m=0.866m v_(1)+0.75m

v_(1)=(3-0.75)/(0.866)

v_(1)=2.6\ m/s

Hence, The speed of the white puck immediately after the collision is 2.6 m/s.

A train travels due south at 20 m/s. It reverses its direction and travels due north at 20 m/s. What is the change in velocity of the train? 50 m/s, due south e50 m/s, due north 120 m/s, due south zero ms 40 m/s, due north

Answers

Answer:

40 m/s due north

Explanation:

Consider that the south direction a negative Y axis and north direction as  + Y axis

v1 = 20 m/s South = 20 (-j) m/s

v2 = 20 m/s North = 20 j m/s

Change in velocity = v2 - v1 = 20 j - 20 (-j) = 40 j m/s

So, change in velocity is 40 m/s due north.