In constructing a moral argument, the point is toA.
come to a conclusion that leads to reasonable action consistent with moral values.

B.
clarify your own stage of moral reasoning.

C.
identify more prescriptive than descriptive premises.

D.
make certain you are being guided by good intentions and a clear conscience.

Answers

Answer 1
Answer: Hello there.

In constructing a moral argument, the point is to

A. 
come to a conclusion that leads to reasonable action consistent with moral values.
Answer 2
Answer: A.) In constructing a moral argument, the point is to "come to a conclusion that leads to reasonable action consistent with moral values"

Hope this helps!

Related Questions

A chair of weight 100 N lies atop a horizontal floor; the floor is not frictionless. You push on the chair with a force of F = 43.0 N directed at an angle of 35.0 degrees below the horizontal and the chair slides along the floor. Using Newton's laws, calculate n, the magnitude of the normal force that the floor exerts on the chair. Express your answer in newtons.
Crude oil is a mixture of many different components. The extraction of crude oil from the Earth is important, but its refinement into different substances is a key piece to obtaining as many uses as possible from the crude oil. Using the diagram, justify the source of data used to develop the technology for refining the crude oil.
When a body falls freely under gravity, then the work done by the gravity is ___________​
A grandfather clock keeps time using a pendulum consisting of a light rod connected to a small heavy mass. With a rod of length L, the period of oscillation is 2.00 s. What should the length of the rod be for the period of the oscillations to be 1.00 s?
Consider the interactions involved when you use a TV remote control to change the channel. Classify each interaction as long range or short range.

A pair of thin spherical shells with radius r and R, r < R are arranged to share a center. What is the capacitance of the system. If a potential difference V is created between the shells, how much energy is stored between them?

Answers

Answer:

Capacitance =  ( 4π×∈×r×R ) / (R-r)

energy store =   ( 4π×∈×r×R )×V²  / (R-r)

Explanation:

given data

radius = r

radius  = R

r < R

to find out

capacitance and how much energy store

solution

we consider here r is inner radius and R is outer radius

so now apply capacitance C formula that is

C = Q/V    .................1

here Q is charge and V is voltage

we know capacitance have equal and opposite charge so

V = \int\limits^R_r {E} \, dx  

here E = Q / 4π∈k²

so

V = Q / 4π∈ \int\limits^R_r {1/k^2} \, dx

V = Q / 4π∈ × ( 1/r - 1/R )

V = Q(R-r)  /   ( 4π×∈×r×R )

so from equation 1

C = Q/V

Capacitance =  ( 4π×∈×r×R ) / (R-r)

and

energy store is  1/2×C×V²

energy store =   ( 4π×∈×r×R )×V²  / (R-r)

A system of 1223 particles, each of which is either an electron or a proton, has a net charge of -5.328×10-17 C. How many protons are in this system (exactly)?

Answers

Answer:

Therefore the number of proton in the given system is 450.

Explanation:

Given that, a system has 1223 particles.

Let x number of proton be present in the system.

Then the number of electron is =(1223-x)

The charge of a proton is = 1.602×10⁻¹⁹ C

The charge of an electron = - 1.602×10⁻¹⁹ C

The charge of x protons is =( 1.6×10⁻¹⁹×x) C

The charge of (1223-x) electrons is = - 1.6×10⁻¹⁹ (1223-x) C

According to the problem,

(1.6×10⁻¹⁹×x) +{ - 1.6×10⁻¹⁹ (1223-x)}= -5.328×10⁻¹⁷

⇒1.6×10⁻¹⁹(x-1223+x)=-5.328×10⁻¹⁷

\Rightarrow (2x-1223)=(-5.328* 10^(-17))/(1.6* 10^(-19))

⇒2x-1223= -333

⇒2x= -333+1223

⇒2x=900

\Rightarrow x=(900)/(2)

⇒x=450

Therefore the number of proton is 450.

X-rays have wavelengths between 0.1 to 10 nanometers (x10-9). What is the range of its frequency? 3x1017-3x1015 Hz
3x10, 18, -3x10, 16, Hz
3x1018-3x1017 Hz
3x1017-3x1016 Hz

Answers

The 2nd one I think

A smart phone charger delivers charge to the phone, in the form of electrons, at a rate of -0.75. How many electrons are delivered to the phone during 27 min of charging?

Answers

Answer:

The no. of electrons is 7.59* 10^(21)

Solution:

According to the question:

The rate at which the charge is delivered is given by:

(dQ)/(dt) = - 0.75

Now,

\int_(0)^(Q)dQ = - 0.75\int_(0)^(27 min) dt

Q = -0.75t|_(0)^(27 min)

Q= -0.75* 27* 60 = - 1215 C

No. of electrons, n can be calculated from the following relation:

Q = ne

where

e = electronic charge =1.6* 10^(- 19) C

Thus

n = (Q)/(e)

n= (1215)/(1.6* 10^(- 19))

n = 7.59* 10^(21)

Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.

Answers

Answer:

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Explanation:

The metals distribute the charge on all surface when they touch the surface increases so that charge density decreases and when the charge is separated into smaller in each metal.

Let's apply this principle to our case.

One of the spheres is loaded with a charge q, when touching a ball its charge is reduced to 1 / 2q for each ball.

         qA = ½ q

         qB = ½ q

         qC = 0

The total charge is q

we make a second contact

If we touch the ball A again with the other sphere not charged C, the chare is distributed and when separated it is reduced by half

         qA = 1/2 (q / 2) = ¼ q

         qC = ¼ q

         qB = ½ q

At this point all spheres have a charge,

      qA = ¼ q

      qb = ½ q

      qC = ¼ q

The total charge is q

Now let's contact spheres B and one of the other two

       Q = ½ q + ¼ q = ¾ q

When splitting the charge

        qB = ½ ¾ q = 3/8 q

        qC = ½ ¾ q = 3/8 q

        qA = ¼ q

The total charge is q

Note that the total load is always equal to q

Now let's analyze the given configuration

Let's look for the total load

       Q = qA + QB + QC

       Q = ½ q + 3/8 q + ¼ q

        Q = 9/8 q

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Final answer:

The principle of charge distribution among conductive materials is violated in qA = 1/2q, qB=3/8q, qC=1/4q, as the sum of charges on B and C doesn't equate to the charge on A and 3/8q isn’t a multiple of halving the original charge.

Explanation:

The answer lies in the fact that balls made of conducting materials when in contact, distribute charges evenly among them. This is due to the free movement of electrons within the conductive material that seeks to equalize potential difference, a property exploited in charge distribution problems of this sort.

Given the scenario, every time a charged ball, A, touches an uncharged ball (B or C) the net charge is evenly split between them. Hence, each subsequent distribution halves the charge of the originating ball (A) and gives the complementary half to the ball it's being touched to (B or C).

In the distribution, qA = 1/2q, qB=3/8q, qC=1/4q, the sum of charges on B and C does not equate to A, which is a violation of the charge conservation principle. Moreover, 3/8q isn’t a multiple of halving the original charge q, which negates the manner in which the charge is distributed (i.e., by halving).

Learn more about Charge Distribution here:

brainly.com/question/35166930

#SPJ3

A 21 kg mountain lion carries a 3kg cub in it's mouth as it jumps from rest on the ground to the top of a 2 m talk rock. It takes 1 seconds for the mountain lion to jump and reach the top. How much power did the mountain lion exert? I need help to solve for power

Answers

Answer:

The power exerted by the mountain lion is 1,472.35 W.

Explanation:

Given;

mass of mountain, m₁ = 21 kg

mass of the cub, m₂ = 3 kg

height jumped by the mountain lion, h = 2 m

time taken for the mountain lion to jump, t = 1 s

Determine the weight of the lions on the top rock;

W = F = (m₁ + m₂)g

F = (21 + 3) x 9.8

F = (24) x 9.8

F = 235.2 N

Determine the final velocity of the mountain rock as it jumped to the top;

v² = u² + 2gh

where;

u is the initial velocity = 0

h is the height jumped = 2 m

v² = 0 + 2 x 9.8 x 2

v² = 39.2

v = √39.2

v = 6.26 m/s

The power exerted by the mountain lion is calculated as;

P = Fv

P = 235.2 x 6.26

P = 1,472.35 W

Therefore, the power exerted by the mountain lion is 1,472.35 W.