Answer:
Explanation:
A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell outwardly oriented and end at negatively charged shell .
B )
distance between the centres of spherical shell
= 2 a
potential energy of charges
= k q₁ x q₂ / R
= k x - Q x Q / ( 2a )
= - k Q²/ 2a
So work needed to separate them to infinity will be equal to
= k Q²/ 2a
Answer:
The voltage will be 0.0125V
Explanation:
See the picture attached
Answer:
5.78971 m
Explanation:
= Initial pressure = 0.873 atm
= Final pressure = 0.0282 atm
= Initial volume
= Final volume
= Initial radius = 16.2 m
= Final radius
Volume is given by
From the ideal gas law we have the relation
The radius of balloon at lift off is 5.78971 m
To find the radius of the weather balloon at lift-off, the ideal gas law can be used. Using the equation P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the pressure and volume at lift-off, the radius at lift-off can be calculated to be approximately 4.99 m.
To find the radius of the weather balloon at lift-off, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.
In this case, we know that the number of moles is constant, as the balloon is filled with the same amount of helium at lift-off and in flight. Therefore, we can write the equation as P1V1 = P2V2, where P1 and V1 are the initial pressure and volume, and P2 and V2 are the pressure and volume at lift-off.
Plugging in the given values, we have (0.873 atm)(V1) = (0.0282 atm)(16.2 m)^3. Solving for V1, we find that the volume at lift-off is approximately 110.9 m^3. The radius can then be calculated using the formula for the volume of a sphere: V = (4/3) * π * r^3, where r is the radius.
Therefore, the radius at lift-off is approximately 4.99 m.
#SPJ3
Answer:
Explanation:
For refraction through a curved surface , the formula is as follows
μ₂ / v - μ₁ / u = (μ₂ -μ₁ )/R , Here μ₂( air) = 1 , μ₁ ( water) = 4/3 , R = 1.95 m
u , object distance = - .465 m
1 / v + 1.333 / .465 = (1 -1.333 )/1.95
1 / v + 2.8667 = - .171
1 / v = - 2.8667 - .171 = - 3.0377
v = - .3292 m
= - 32.92 cm
image will be formed in water.
c ) magnification = μ₁v / μ₂u , μ₁ = 1.33 , μ₂ = 1 , u = 46.5 , v = 32.92 .
= (1.33 x 32.92) / (1 x 46.5)
= .94
size of image of teeth = .94 x 5
= 4.7 cm .
Answer:
5N
Explanation:
(25 N - 20 N = 5 N)
Answer:
The length is 5.2 mm.
Explanation:
Given that,
Time period T²= 0.021 s²
Gravity due to acceleration = 9.78 m/s²
We need to calculate the length
Using formula of time period of pendulum
Where, l = length
g = acceleration due to gravity
T = time period
Put the value into the formula
Hence, The length is 5.2 mm.