Answer:
61 degrees, I just did the test.
Explanation:
Answer: 61 degrees
Explanation:
I just did the question and got it right
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
Answer:
Magnitude - 11.83 Degree
Direction - 422.42 N
Explanation:
Given data:
Downward force on wire 176 N
Angle made by left section of wire 12.5 degree with horizontal
Tension force = 413 N
From figure
Applying quilibrium principle at point A
The vertical and horizontal force is 0
then we have
........1
.......2
.......3
divide equation 3 by 1
we get
...........4
from equation 3 and 4
T = 422.42 N
Answer:
360 Nm
Explanation:
Torque: This is the force that tend to cause a body to rotate or twist. The S.I unit of torque is Newton- meter (Nm).
From the question,
The expression of torque is given as
τ = F×d......................... Equation 1
Where, τ = Torque, F = force, d = distance of the bar perpendicular to the force.
Given: F = 40 N, d = 9 m
Substitute into equation 1
τ = 40(9)
τ = 360 Nm.
Answer:
360Nm
Explanation:
Torque is defined as the rotational effect of a force. The magnitude of a torque τ, is given by;
τ = r F sin θ
Where;
r = distance from the pivot point to the point where the force is applied
F = magnitude of the force applied
θ = the angle between the force and the vector directed from the point of application to the pivot point.
From the question;
r = 9m
F = 40N
θ = 90° (since the force is applied perpendicular to the end of the bar)
Substitute these values into equation (i) as follows;
τ = 9 x 40 sin 90°
τ = 360Nm
Therefore the torque is 360Nm
The concept to solve this problem is related to the relativistic physics for which the speed of the object in different frames of reference is related. This concept is called Velocity-addition formula
and can be written as,
Where,
u = Velocity of a body within a Lorentz Frame
v = Velocity of a second frame
u'= The transformed velocity of the body within the second frame
c = speed of light
Replacing we have to
Therefore the meteor moving with respect to the Earth to 230'700.000m/s
Answer:
The correct option is D
Explanation:
From the question we are told that
The maximum electric field strength is
The area is
Generally the force the laser applies is mathematically represented as
Here
=>
Answer:
a)
b)
Explanation:
Given:
(a)
Using the equation of motion :
..............................(1)
where:
v=final velocity of the body
u=initial velocity of the body
here, since the body starts from rest state:
putting the values in eq. (1)
Now, the momentum of the body just before the jump onto the tyre will be:
Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.
(b)
Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.
So,
above the normal hanging position.
Many moons, smaller in size and a ring system.
Rocky surface, closest to the sun and larger in size,
Gaseous composition, larger size and many moons.
Gaseous composition, larger size and many moons describe about the outer planets.
Jupiter, Saturn, Uranus, and Neptune are the four outer planets. They are all gas giants consisting primarily of hydrogen and helium. Their interiors are liquid and contain thick gaseous outer layers. Numerous moons and planetary rings consisting of dust and other particles are present on every one of the outer planets.
To know more about outer planets refer to :
#SPJ2
Answer: D
Explanation: Gaseous composition, larger size and many moons