Answer:
Ohms law
Explanation:
Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.
Answer:
178.75 N
Explanation:
The force necessary to start moving the crate must be equal to or more than the frictional force (resistive force) acting on the crate but moving in an opposite direction to the frictional force.
So, we find the frictional force, Fr:
Fr = -μmg
Where μ = coefficient of friction
m = mass
g = acceleration due to gravity
The frictional force is negative because it acts against the direction of motion of the crate.
Fr = -0.57 * 32 * 9.8
Fr = - 178.75 N
Hence, the force necessary to move the crate must be at least equal to but opposite in direction to this frictional force.
Therefore, this force is 178.75 N
Swinging a tennis racket against a ball is an example of a third class lever.
OT
OF
9
Please select the best answer from the choices provided.
K
Swinging a tennis racket against a ball as a third class lever in physics.
A tennis racket swinging against a ball is indeed an example of a third class lever in physics. In a third class lever, the effort is situated between the fulcrum and the load. In this case, the effort is provided by the player's hand gripping the racket handle, the fulcrum is the wrist joint, and the load is the ball being struck by the racket.
When a player swings the racket, the force applied by the player's hand exerts an effort on the handle of the racket. This causes the racket to rotate about the wrist joint acting as the fulcrum. The ball serves as the load, receiving the force and accelerating in the opposite direction.
Answer:
The spacing is 5.15 μm.
Explanation:
Given that,
Electron with energy = 25 eV
Wave length = 0.25 nm
Separation d= 0.16 mm
Distance D=3.3 m
We need to calculate the spacing
Using formula of width
Put the value into the formula
Hence, The spacing is 5.15 μm.
To calculate the spacing between maxima in a double slit interference pattern, we use the formula x = L * λ / d. Converting the given units to meters and plugging the values into the formula, we find that the spacing between maxima on the screen is approximately 5.14 micro meters.
To calculate the spacing between maxima, we can utilize the formula for double slit interference, θ = λ/d where λ represents the wavelength of the electron, d is the distance between the two slits, and θ is the angle of diffraction. Considering the small angle approximation for tan θ ≈ θ, we get x = L * λ / d, where x is the distance between maxima on the screen, and L is the distance from the slits to the screen.
Firstly, the electron's wavelength needs to be converted from nm to m, resulting in λ = 0.25 * 10^-9 m. Similarly, the slit separation d should be converted from mm to m, giving d = 0.16 * 10^-3 m. Inserting these values into the formula along with L = 3.3 m, we can solve for x.
x = (3.3 m * 0.25 * 10^-9 m) / 0.16 * 10^-3 m =~ 5.14 μm
So, the spacing between maxima on the screen is approximately 5.14 micrometers.
#SPJ11
Answer:
560 watts
The rate of energy dissipation is 560 W
Explanation:
Rate of energy dissipation is the rate of energy consumption in the x-ray tube.
P = VI
Given;
Voltage V = 80 kV = 80,000
Current I = 7mA = 0.007 A
Substituting the given values;
P = 80,000 V × 0.007A
P = 560 Joules per second
P = 560 watts
The rate of energy dissipation is 560 W
Answer:
Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s
At the time of collision velocity of ball one is descending.
Explanation:
Velocity of ball 1 = 146 ft/sec = 44.50m/s
The balls are to collide at an altitude of 234 ft
H = 234 ft = 71.32 m
We have equation of motion
v² = u² + 2as
v² = 44.50² + 2 x (-9.81) x 71.32
v = ±24.10 m/s.
Time for each velocity can be calculated using equation of motion
v = u + at
24.10 = 44.50 - 9.81 t , t = 2.07 s
-24.10 = 44.50 - 9.81 t , t = 6.99 s
Since the second ball throws after 2.3 seconds we can avoid case with t = 2.07 s.
So at the time of collision velocity of ball one is descending.
The collision occurs at t = 6.99 s.
Time of flight of ball 2 = 6.99 - 2.3 = 4.69 seconds.
Height traveled by ball 2 = 71.32 m
We need to find velocity
We have
s = ut + 0.5 at²
71.32 = u x 4.69 - 0.5 x 9.81 x 4.69²
u = 38.21 m/s = 125.36 ft/s
Initial velocity of ball 2 = 38.21 m/s = 125.36 ft/s
Answer:
v2=139 ft
Explanation:
First we just look at the motion of the first particle. It is moving vertically in a gravitational field so is decelerating with rate g = 9.81 m/s^2 = 32.18 ft/s^2. We can write it's vertical position as a function of time.
h_1=v_1*t-(a*t/2)
We set this equal to 234 ft to find when the body is passing that point, a solve the quadratic equation for t.
t_1,2=v_1±(√v_1^2-4*a/2*h_1)/a=2.57 s, 7.44 s
Since we know the second ball was launched after 2.3 seconds, we know that the time we are looking for is the second one, when the first ball is descending. The second ball will have 2.3 seconds less so the time we further use is t_c = 7.44 - 2.3 = 5.14 s. With this the speed of the second ball needed for collision at given height, can be found.
Solving a similar equation, but this time for v2 to obtain the result.
h_2=234 ft=v2*t_c-(a*t_c^2/2)--->v2=139 ft