Answer:
A) No
B)-9,81 m/s^2
C)0 m/s^2
Explanation:
A free fallin object has only velocity on the vertical axis so any object that is moving in the Y and X axis has projetile motion not free falling, and when dealing with projectile motion the object is experiencing acceleration towards the ground of -9,81m/s^2 and in the Y axis, in the X axis there´s is only acceleration if the air is providing resistance, since it states that it isnot, then the accleration is 0.
Answer:
Explanation:
P(v) = 16 / v + 10⁻³ v³
differentiating on both sides
dP / dt = - 16 / v² + 3 x 10⁻³ v²
For maxima and minima , the condition is
dP / dt = - 16 / v² + 3 x 10⁻³ v² = 0
v² = 160 / 3 x 10²
v² = 73 m/s
v = 8.54 m /s
To know the condition of minima
again differentiating
d²P / dt² = - 16 x -2 / v² + 6 x 10⁻³ x v
= 32 / v³ + 6 x 10⁻³ x v
= + ve quantity
So at v_p = 8.54 m /s , power consumption will be minimum .
Answer: 1 microgram is equal to 0.001 miligrams
Explanation: The factor micro is equal 10^-3 while the factor mili is equal to 10^-3 so to converte the micro to mile we have to multiply by 0.001.
This question involves the concepts of derivative, apparent temperature, actual temperature,and wind speed.
The drop in apparent temperature will be "1.25°C".
The apparent temperature (W) is given in terms of actual temperature (T) and wind speed (v) is given by the following function:
Taking the derivative with respect to actual temperature, we get:
where,
dW = drop in apparent temperatures = ?
dT = drop in actual temperature = - 1°C
v = wind speed = 18 km/h
Therefore,
dW = - 1.25°C
Learn more about derivatives here:
Answer:
Δw=1.25°C
Explanation:
Given that
Given that T= 12°C and v=19 km/h
Now to find the drop in the apparent temperature w
So
Now by putting the values v=19 km/hr and ΔT=1
Δw=1.25°C
So we can say that when temperature is decrease by 1°C then apparent temperature will decrease by 1.25°C at given velocity.
d1=_____m
Part B:
d2=______m
Answer:
Explanation:
In projectile motion , range of projectile is given by the expressions
R = u²sin2θ / g
where u is velocity of projectile.
u = 27 m/s θ = 50
12 = 27² sin 2θ / 9.8
sin 2θ = .16
θ = 9.2 / 2
= 4.6
When we place 90- θ in place of θ , in the formula of range , we get the same value of projectile. hence at 85.4 ° , the range will be same.
A. sideways
B. up and down
C. back and forth
D. all of the above
Answer: D i am pretty sure
Explanation:
Answer:
all
Explanation:
Answer:
Following are the solution to the given question:
Explanation:
Please find the complete question in the attached file.
The cost after 30 days is 60 dollars. As energy remains constant, the cost per hour over 30 days will be decreased.
Thus,
The electricity used is continuously 694W over 30 days.
If just resistor loads (no reagents) were assumed,
Energy usage reduction percentage =
This bulb accounts for of the energy used, hence it saves when you switch it off.