solution:
Answer:
STRING held by the man
Explanation:
Wave is defined as a disturbance that travels through a MEDIUM and transfer energy from one point to another without causing any permanent displacement of the medium itself.
The medium through which wave travels varies e.g water, string, air etc
According to the diagram, wave travels through the string held by the man. This string is referred to as the MEDIUM through which the wave moves. The wave generated produces both crest (D) and trough (C) when displaced from its initial position (A)
Rope or one could consider it to be C to B or A to D
Answer:
a. 409.5 m/s b. f₁ = 136.5 Hz, f₂ = 409.5 Hz, f₃ = 682.5 Hz
Explanation:
a. The speed of sound v in a gas is v = √(B/ρ) where B = bulk modulus and ρ = density. Given that on Venus, B = 1.09 × 10⁷ N/m² and ρ = 65.0 kg/m³
So, v = √(B/ρ)
= √(1.09 × 10⁷ N/m²/65.0 kg/m³)
= √(0.01677 × 10⁷ Nm/kg)
= √(0.1677 × 10⁶ Nm/kg)
= 0.4095 × 10³ m/s
= 409.5 m/s
b. For a pipe open at one end, the frequency f = nv/4L where n = mode of wave = 1,3,5,.., v = speed of wave = 409.5 m/s and L = length of pipe = 75.0 cm = 0.75 m
Now, for the first mode or frequency, n = 1
f₁ = v/4L
= 409.5 m/s ÷ (4 × 0.75 m)
= 409,5 m/s ÷ 3 m
= 136.5 Hz
Now, for the second mode or frequency, n = 2
f₂ = 3v/4L
= 3 ×409.5 m/s ÷ (4 × 0.75 m)
= 3 × 409,5 m/s ÷ 3 m
= 3 × 136.5 Hz
= 409.5 Hz
Now, for the third mode or frequency, n = 5
f₃ = 5v/4L
= 5 × 409.5 m/s ÷ (4 × 0.75 m)
= 5 × 409,5 m/s ÷ 3 m
= 682.5 Hz
Distance traveled by the bicycle during the 5 seconds of braking is 22m
Explanation:
initial angular velocity= 2 rev/s
final angular velocity= 0 rev/s
Angular displacement Ф=t
Ф= rev
so the distance travelled= 5(2πr)
distance=5(2π*0.7)
distance=22m
The bicycle traveled about 22 m during the 5.0 seconds of braking
Centripetal Acceleration can be formulated as follows:
a = Centripetal Acceleration ( m/s² )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
Centripetal Force can be formulated as follows:
F = Centripetal Force ( m/s² )
m = mass of Particle ( kg )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
Let us now tackle the problem !
Given:
radius of wheel = R = 0.70 m
initial angular speed = ω = 2.0 rev/s = 4π rad/s
final angular speed = ωo = 0 rad/s
time taken = t = 5.0 s
Asked:
distance covered = d = ?
Solution:
Grade: High School
Subject: Physics
Chapter: Circular Motion
Answer:
The total percent cold work done is 36.46%
Explanation:
Let initial metal thickness = T
Final metal thickness = t
The percent cold work done = WC
Then
%Wc = (T - t)/T × 100
% Wc = ( 0.096 - 0.061 )/0.096 ×100
Total %WC = 36.46%
Answer:
The total percent of cold work is 57.34%
Explanation:
Let x the initial thickness of the sheet. After 33% of cold working, the thickness is 0.096 in. Then:
x - 0.33x = 0.096
x = 0.143 in
the final thickness is equal to 0.061 in. The percent of cold work done is:
%