To find the components of the velocity vector, you can use trigonometry. The north component is calculated using the sine function and the west component is calculated using the cosine function. After 2.20 hours, the distance traveled north and west can be found by multiplying the velocity components by the time.
To find the components of the velocity vector in the northerly and westerly directions, we can use trigonometry. The velocity vector is 835 km/h and is traveling in a direction 41.5° west of north. To find the north component, we can use the sine function: North component = velocity * sin(angle). To find the west component, we can use the cosine function: West component = velocity * cos(angle).
After 2.20 hours, we can find the distance traveled north and west by multiplying the velocity components by the time: Distance north = North component * time and Distance west = West component * time.
Let's calculate the values:
#SPJ3
Here ΔI/Δt characterizes the rate at which the current I through the inductor is changing with time t.
Based on the equation given in the introduction, what are the units of inductance L in terms of the units of E, t, and I (respectively volts V, seconds s, and amperes A)?
What EMF is produced if a waffle iron that draws 2.5 amperes and has an inductance of 560 millihenries is suddenly unplugged, so the current drops to essentially zero in 0.015 seconds?
Answer:
Explanation:
E= −L ΔI / Δt.
L = E Δt / ΔI
Hence the unit of inductance may be V s A⁻¹
or volt s per ampere .
In the given case
change in current ΔI = - 2.5 A
change in time = .015 s
L = .56 H
E = − L ΔI / Δt.
= .56 x 2.5 / .015
= 93.33 V .
Answer:
0.3659
Explanation:
The power (p) is given as:
P = AeσT⁴
where,
A =Area
e = transmittivity
σ = Stefan-boltzmann constant
T = Temperature
since both the bulbs radiate same power
P₁ = P₂
Where, 1 denotes the bulb 1
2 denotes the bulb 2
thus,
A₁e₁σT₁⁴ = A₂e₂σT₂⁴
Now e₁=e₂
⇒A₁T₁⁴ = A₂T₂⁴
or
substituting the values in the above question we get
or
=0.3659
A.0.41 sec
B.41 sec
C.4.1 sec
D.4 sec
A horizontal baseball pitch is launched at 44 m/s. The ball will stay for 4.1 sec (approx) in the air. Hence, option C is correct.
The rate at which an object's position changes when observed from a specific point of view and when measured against a specific unit of time is known as its velocity.
Its SI unit is represented as m/s, and it is a vector quantity, it means that it has both magnitude and direction.
According to the question, the given values are :
Initial Velocity, u = 44 m/s,
Distance travelled, s = 18 m and,
Final velocity, v = 0.
Use equation of motion :
v = u + at
0 = 44 + (-9.8)t
t = 44 / 9.8
t = 4.3 (approx)
Hence, the time for which the ball stay in the air is 4.1 sec (approx).
To get more information about velocity :
#SPJ2
Answer:
a 0.41
plug number into equation
(a) 9.8 m/s^2, downward
There is only one force acting on the ball while it is in flight: the force of gravity, which is
F = mg
where
m is the mass of the ball
g is the gravitational acceleration
According to Newton's second law, the force acting on the ball is equal to the product between the mass of the ball and its acceleration, so
F = mg = ma
which means
a = g
So, the acceleration of the ball during the whole flight is equal to the acceleration of gravity:
g = -9.8 m/s^2
where the negative sign means the direction is downward.
(b) v = 0
Any object thrown upward reaches its maximum height when its velocity is zero:
v = 0
In fact, at that moment, the object's velocity is turning from upward to downward: that means that at that instant, the velocity must be zero.
(c) 8.72 m/s, upward
The initial velocity of the ball can be found by using the equation:
v = u + at
Where
v = 0 is the velocity at the maximum height
u is the initial velocity
a = g = -9.8 m/s^2 is the acceleration
t is the time at which the ball reaches the maximum height: this is half of the time it takes for the ball to reach again the starting point of the motion, so
So we can now solve the equation for u, and we find:
(d) 3.88 m
The maximum height reached by the ball can be found by using the equation:
where
v = 0 is the velocity at the maximum height
u = 8.72 m/s is the initial velocity
a = g = -9.8 m/s^2 is the gravitational acceleration
d is the maximum height reached
Solving the equation for d, we find
b. one-third the current in the outer solenoid
c. twice the current in the outer solenoid
d. half of the current in the outer solenoid
e. the same as the current in the outer solenoid
Answer: The current in the inner solenoid is the same as the current in the outer solenoid.
The correct option is e
Explanation: Please see the attachment below
Answer:
The Jupiter´s mass is approximately 1.89*10²⁷ kg.
Explanation:
The only force acting on Calisto while is rotating around Jupiter, is the gravitational force, as defined by the Newton´s Universal Law of Gravitation:
Fg = G*mc*mj / rcj²
where G = 6.67*10⁻¹¹ N*m²/kg², mc= Callisto´s mass, mj= Jupiter´s mass, and rcj = distance from Jupiter for Callisto= 1.88*10⁹ m.
At the same time, there exists a force that keeps Callisto in orbit, which is the centripetal force, that actually is the same gravitational force we have already mentioned.
This centripetal force is related with the period of the orbit, as follows:
Fc = mc*(2*π/T)²*rcj.
In order to be consistent in terms of units, we need to convert the orbital period, from days to seconds, as follows:
T = 16.69 days* 86,400 (sec/day) = 1.44*10⁶ sec.
We have already said that Fg= Fc, so we can write the following equality:
G*mc*mj / rcj² = mc*(2*π/T)²*rcj
Simplifying common terms, and solving for mj, we get:
mj = 4*π²*(1.88*10⁹)³m³ / ((1.44*10⁶)² m²*6.67*10⁻11 N*m²/kg²)
mj = 1.89*10²⁷ kg.
Answer: Mass of Jupiter ~= 1.89 × 10^23 kg
Explanation:
Given:
Period P= 16.69days × 86400s/day= 1442016s
Radius of orbit a = 1.88×10^6km × 1000m/km
r = 1.88 × 10^9 m
Gravitational constant G= 6.67×10^-11 m^3 kg^-1 s^-2
Applying Kepler's third law, which is stated mathematically as;
P^2 = (4π^2a^3)/G(M1+M2) .....1
Where M1 and M2 are the radius of Jupiter and callisto respectively.
Since M1 >> M1
M1+M2 ~= M1
Equation 1 becomes;
P^2 = (4π^2a^3)/G(M1)
M1 = (4π^2a^3)/GP^2 .....3
Substituting the values into equation 3 above
M1 = (4 × π^2 × (1.88 × 10^9)^3)/(6.67×10^-11 × 1442016^2)
M1 = 1.89 × 10^27 kg