Explanation:
It is given that,
Mass of the tennis ball,
Initial speed of tennis ball,
Mass of ball,
Initial speed of ball,
In case of elastic collision, the momentum remains conserved. The momentum equation is given by :
are final speed of tennis ball and the ball respectively.
..............(1)
We know that the coefficient of restitution is equal to 1. It is given by :
.................(2)
On solving equation (1) and (2) to find the values of velocities after collision.
So, the speed of both balls are 5.28 m/s and 3 m/s respectively. Hence, this is the required solution.
c. Glass C
d. All three have equal non-zero pressure at the bottom.
e. All three have zero pressure at the bottom.
Answer:
d
Explanation:
Pressure of the fluid in any container is a function of density of the fluid in the container, and depth of the fluid.
The static pressure of fluid in a container with depth h is given by:
P = p * g* h
Where p : density of fluid
g: gravitational constant 9.81 m/s^2
h : depth of the fluid
Since, all the glasses filled have same Area base, same depth and same density of fluid and g is constant. The pressure at the bottom of each drinking glass is equal for all cases. As supported by the relationship given above.
a) The large sphere has 3 times the mass of the small sphere
b) The final height at which small ball reach y = 4H
We must start this problem by calculating the speed with which the spheres reach the floor
As the spheres are released v₀ = 0
The two spheres arrive at the same speed to the floor.
The largest sphere clashes elastically so that with the floor it has a much higher mass, the sphere bounces with the same speed with which it arrived, the exit speed of the spheres
The big sphere goes up and the small one down, the two collide, let's form a system that contains the two spheres, let's use moment conservation
Let's call
Small sphere m₂ and
Large sphere m₁ and
Before crash
After the crash
The conservation of kinetic energy
Let's write the values
The solution to this system of equations is
The large sphere is labeled 1, we are asked for the mass so that = 0, let's clear the equation
The large sphere has to complete 3 times the mass of the sphere1 because it stops after the crash.
b) Let us calculate with the other equation the speed with which the sphere comes out2 (small)
In addition, we know that m₁ = 3 m₂
mt = 3m2 + m2
This is the rate of rising of sphere 2 (small. At the highest point, it zeroes velocity = 0
Thus
a) The large sphere has 3 times the mass of the small sphere
b) The final height at which small ball reach y = 4H
To know more about the Laws of collisions follow
Answer:
a) the large sphere has 3 times the mass of the small sphere
b) y = 4H
Explanation:
We must start this problem by calculating the speed with which the spheres reach the floor
vf² = vo² - 2g y
As the spheres are released v₀ = 0
vf² = - 2g H
vf = √ (2g H)
The two spheres arrive with the same speed to the floor.
The largest sphere clashes elastically so that with the floor it has a much higher mass, the sphere bounces with the same speed with which it arrived, the exit speed of the spheres
V₁₀ = √2gH
The big sphere goes up and the small one down, the two collide, let's form a system that contains the two spheres, let's use moment conservation
Let's call vh = √2gH
Small sphere m₂ and v₂o = - √2gH = -vh
Large sphere m₁ and v₁o = √ 2gh = vh
Before crash
p₀ = m₁ v₁₀ + m₂ v₂₀
After the crash
pf = m₁ v₁f + m₂ v₂f
po = pf
m₁ v₁₀ + m₂ v₂₀ = m₁ v₁f + m₂ v₂f
The conservation of kinetic energy
Ko = ½ m₁ v₁₀² + ½ m₂ v₂₀²
Kf = ½ m₁ v₁f² + ½ m₂ v₂f²
Ko = KF
½ m₁ v1₁₀² + ½ m₂ v₂₀² = ½ m₁ v₁f² + ½ m₂ v₂f²
Let's write the values
-m₁ vh + m₂ vh = m₁ v₁f + m₂ v₂f
m₁ vh² + m₂ vh² = m₁ v₁f² + m₂ v₂f²
The solution to this system of equations is
mt = m₁ + m₂
v1f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂
v₂f = 2m₁ /mt v₁₀ + (m₂-m₁) / mt v₂
The large sphere is labeled 1, we are asked for the mass so that v1f = 0, let's clear the equation
v₁f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂₀
0 = (m₁-m₂) / mt vh + 2 m₂ / mt (-vh)
(m₁-m₂) / mt vh = 2 m₂ / mt vh
(m₁-m₂) = 2m₂
m₁ = 3 m₂
The large sphere has to complete 3 times the mass of the sphere1 because it stops after the crash.
b) Let us calculate with the other equation the speed with which the sphere comes out2 (small)
v₂f = 2m₁ / mt v₁₀ + (m₂-m₁) / mt v₂₀
v₂f = 2 m₁ / mt vh + (m₂-m₁) mt (-vh)
In addition, we know that m₁ = 3 m₂
mt = 3m2 + m2
mt= 4m2
v₂f = 2 3m₂ / 4m₂ vh - (m₂-3m₂) 4m₂ vh
v₂f = 3/2 vh +1/2 vh
v₂f = 2 vh
v₂f = 2 √ 2gh
This is the rate of rise of sphere 2 (small. At the highest point its zero velocity vf = 0
V² = v₂f² - 2 g Y
0 = (2√2gh)² - 2gy
2gy = 4 (2gH)
y = 4H
Answer:
450 pm
Explanation:
The electron is held in orbit by an electric force, this works as the centripetal force. The equation for the centripetal acceleration is:
a = v^2 / r
The equation for the electric force is:
F = q1 * q2 / (4 * π * e0 * r^2)
Where
q1, q2: the electric charges, the charge of the electron is -1.6*10^-19 C
e0: electric constant (8.85*10^-12 F/m)
If we divide this force by the mass of the electron we get the acceleration
me = 9.1*10^-31 kg
a = q1 * q2 / (4 * π * e0 * me * r^2)
v^2 / r = q1 * q2 / (4 * π * e0 * me * r^2)
We can simplify r
v^2 = q1 * q2 / (4 * π * e0 * me * r)
Rearranging:
r = q1 * q2 / (4 * π * e0 * me * v^2)
r = 1.6*10^-19 * 1.6*10^-19 / (4 * π * 8.85*10^-12 * 9.1*10^-31 * (7.5*10^5)^2) = 4.5*10^-10 m = 450 pm
Answer:
Explanation:
From the question we are told that:
Mass
Speed
Acceleration Time
Constant speed Time
Deceleration time
Generally the equation for Acceleration is mathematically given by
Therefore acceleration for the first 0.80 sec is
Therefore
Spring Reading=Normal force -Reaction
Answer:
V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.
Answer:
Explanation:
Initial velocity u = -1.1 i m /s ( along - ve direction )
final velocity = - 13.9 j
change in velocity = -13.9 j + 1.1 i
rate of change of velocity
acceleration
= (-13.9 j + 1.1 i) / 1.2
= -11.58 j + 0.916 i
x component
= 0.916 m /s²
y component
= - 11.58 m / s²