Answer:
96.05 N
Explanation:
From Vector,
The two forces acting along the x and y axis are perpendicular,
Fr = √(60²+75²) .............. Equation 1
Where Fr is the result of the two forces
Fr = √(3600+5625)
Fr = √(9225)
Fr = 96.05 N.
Note: Since the object moves with a constant velocity when it is acted upon by the three forces, The acceleration is zero and as such the resultant of the forces is equal to zero.
Therefore,
Ft = Fr+F3................... Equation 2
Where Ft = Total resistance of the three forces, F3 = magnitude of the third force.
make F3 the subject of the equation,
F3 = Ft-Fr
Given: Ft = 0 N, Fr = 96.05 N.
Substitute into equation 2
F3 = 0-96.05
F3 = -96.05 N.
7.) True or False: "Courtney is traveled 5 miles in 3 hours" is an example of
acceleration.
True
False
Answer:
The speed is
Explanation:
From the question we are told that
The angle of slant is
The weight of the toolbox is
The mass of the toolbox is
The start point is from lower edge of roof
The kinetic frictional force is
Generally the net work done on this tool box can be mathematically represented as
The workdone due to weigh is =
The workdone due to friction is =
Substituting this into the equation for net workdone
Substituting values
According to work energy theorem
From the question we are told that it started from rest so u = 0 m/s
Making v the subject
Substituting value
Answer:
3.27
Explanation:
Electric Power: This can be defined as the rate at which electric energy is consumed. The unit of power is Watt (W).
Mathematically, electric power is represented as
P = VI ..................................... Equation 1.
Where P = power, V = voltage, I = Current.
For Circuit A,
P₁ = V₁I₁ ................................... Equation 2
Where P₁ = maximum power delivered by circuit A, V₁ = Voltage of circuit A, I₁ = circuit breaker rating of circuit A.
Given: V₁ = 218 V, I₁ = 45 A.
Substituting into equation 2
P₁ = 218×45
P₁ = 9810 W.
For Circuit B,
P₂ = V₂I₂............................. Equation 3
Where P₂ = maximum power delivered by the circuit B, V₂ = voltage of circuit B, I₂ = circuit breaker rating of circuit B
Given: V₂ = 120 V, I₂ = 25 A.
Substitute into equation 3
P₂ = 120(25)
P₂ = 3000 W.
Ratio of maximum power delivered by circuit A to that delivered by circuit B = 9810/3000
= 3.27.
Thus the ratio of maximum power delivered by circuit A to circuit B = 3.27
In this problem, we have calculated the work done by Susan pulling her baby brother on a mat and the work done against friction. The net work done, which is the work done by Susan's pulling minus the work done against friction, is transformed into kinetic energy, giving us the baby's speed after being pulled 3m, which is approximately 1.95 m/s.
To answer this question, we first need to calculate the work done by Susan when she pulls the mat over the distance of 3.0 meters. The angle at which the rope is pulled does make a difference in this calculation. The force that is actually contributing to the work is the horizontal component of the tension, which can be determined by the equation Fh = F cos θ which equals 30N * cos30 = 25.98N.
The work done, W, is equal to this force multiplied by the displacement, so W = Fd = 25.98N * 3m = 77.94 Joules.
Next, we need to calculate the work done against friction. The force of friction is calculated as Ff = µN. Here N is the normal force, which is equal to the weight of the baby, so N = mg = 10kg * 9.8m/s² = 98N. The force of friction then is Ff = µN = 0.20 * 98N = 19.6N. The work done against friction is Wf = Ff * d = 19.6N * 3m = 58.8 Joules.
The net work done on the baby is the work done by Susan minus the work done against friction, so Wnet = W - Wf = 77.94J - 58.8J = 19.14 Joules. This net work is equal to the change in kinetic energy of the baby, ∆K, since Kinitial = 0 (Paul starts at rest), the work done is all transformed into final kinetic energy. So ∆K = 19.14J.
The kinetic energy of an object is given by the equation K = 1/2 mv², so we have 19.14J = 1/2 * 10kg * v². Solving for v gives us roughly v = 1.95 m/s. Therefore, the speed of the baby after being pulled 3 meters is approximately 1.95 m/s.
#SPJ12
To determine Paul's speed, we must calculate the net work done on him using the work-energy theorem. This includes the work done by Susan and the work done against friction. Paul’s speed after being pulled 3.0 m is approximately 1.96 m/s.
Solving this problem involves understanding the work-energy theorem and forces. First, let's calculate the work done. The work done by the force Susan applies (W1) is the product of the tension (T), the distance (d), and the cosine of the angle (θ). W1 = T * d * cos(θ) = 30N * 3.0m * cos(30) = 77.94J.
Next, the work done against friction (W2) is the product of the frictional force and the distance, which is µmgd. Here, µ is the coefficient of friction (0.20), m (10kg) is the mass of the baby, g (9.8m/s2) is the acceleration due to gravity, and d is the distance (3.0 m). W2 = µmgd = 0.20 * 10kg * 9.8m/s2 * 3.0m = 58.8J.
According to the work-energy theorem, the net work done on an object is equal to the change in its kinetic energy. Therefore, the final kinetic energy (and thus the final speed) of Paul will be the initial kinetic energy plus the net work done on him. His initial speed is assumed to be zero, hence the initial kinetic energy is zero. The net work done on him is W = W1 - W2= 77.94J - 58.8J = 19.14J. Setting this equal to the final kinetic energy, (1/2)mv2, allows us to solve for the final speed, v = sqrt((2 * W)/m) = sqrt((2 * 19.14J)/10kg) = 1.96 m/s approximately.
#SPJ11
(b) the total work done on it,
(c) the work done by the gravitational force on the crate, and
(d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force F does on the crate.
(f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?
Answer:
(a) magnitude of F = 797 N
(b)the total work done W = 0
(c)work done by the gravitational force = -1.55 kJ
(d)the work done by the pull = 0
(e) work your force F does on the crate = 1.55 kJ
Explanation:
Given:
Mass of the crate, m = 220 kg
Length of the rope, L = 14.0m
Distance, d = 4.00m
(a) What is the magnitude of F when the crate is in this final position
Let us first determine vertical angle as follows
=>
=> =
Now substituting thje values
=> =
=>
=>
=>
Now the tension in the string resolve into components
The vertical component supports the weight
=>
=>
=>
=>
=>
=>T =2391N
Therefore the horizontal force
F = 797 N
b) The total work done on it
As there is no change in Kinetic energy
The total work done W = 0
c) The work done by the gravitational force on the crate
The work done by gravity
Wg = Fs.d = - mgh
Wg = - mgL ( 1 - Cosθ )
Substituting the values
=
=
=
=
=
= -1552.55 J
The work done by gravity = -1.55 kJ
d) the work done by the pull on the crate from the rope
Since the pull is perpendicular to the direction of motion,
The work done = 0
e)Find the work your force F does on the crate.
Work done by the Force on the crate
WF = - Wg
WF = -(-1.55)
WF = 1.55 kJ
(f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)
Here the work done by force is not equal to F*d
and it is equal to product of the cos angle and F*d
So, it is not equal to the product of the horizontal displacement and the answer to (a)
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
Answer:
Magnitude - 11.83 Degree
Direction - 422.42 N
Explanation:
Given data:
Downward force on wire 176 N
Angle made by left section of wire 12.5 degree with horizontal
Tension force = 413 N
From figure
Applying quilibrium principle at point A
The vertical and horizontal force is 0
then we have
........1
.......2
.......3
divide equation 3 by 1
we get
...........4
from equation 3 and 4
T = 422.42 N