Answer:
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s
"Binary" information
Answer:
The underwater angles of refraction for the blue and red components of the light is 47.8° and 48.2°
Explanation:
Using the Snell's law
n1 * sin Ф1 = n2 sin Ф2
1 * sin 83 = n2 sin Ф2
Ф2 =
Red light
n2 = 1.331
Ф2 = °
Blue light
n2 = 1.340
Ф2 = °
Incomplete question.The complete question is here
What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade? The outer edge of the blade is 21 cm from the center of the blade, and the mass of the outer portion is 7.7 g. Even though the blade is 21cm long, the last 2cm should be treated as if they were at a point 20cm from the center of rotation.
Answer:
F= 0.034 N
Explanation:
Given Data
Outer=2 cm
Edge of blade=21 cm
Mass=7.7 g
Length of blade=21 cm
The last 2cm is treated as if they were at a point 20cm from the center of rotation
To Find
Force=?
Solution
Convert the given frequency to angular frequency
ω = 45 rpm * (2*pi rad / 1 rev) * (1 min / 60 s)
ω= 3/2*π rad/sec
Now to find centripetal force.
F = m×v²/r
F= m×ω²×r
Put the data
F = 0.0077 kg × (3/2×π rad/sec)²× 0.20 m
F= 0.034 N
track with a radius of 30 meters. What
is the car's rate of centripetal
acceleration?
The car's rate of centripetal acceleration in the circular path is 4.8 m/s².
The given parameters;
The centripetal acceleration of the car is calculated as follows;
where;
Substitute the given parameters and solve for the centripetal acceleration;
Thus, the car's rate of centripetal acceleration is 4.8 m/s².
Learn more here:brainly.com/question/11700262
Answer:
Explanation:
If the sun considered as x=0 on the axis to put the center of the mass as a:
solve to r1
Now convert to coordinates centered on the center of mass. call the new coordinates x' and y' (we won't need y'). Now since in the sun centered coordinates the angular momentum was
where T = orbital period
then L'(x',y') = L(x) by conservation of angular momentum. So that means
Since
then
In a two-body system such as the Sun-Saturn system, both bodies orbit around their mutual center of mass, or barycenter. Given the Sun's significantly larger mass, this barycenter is near the center of the Sun, and hence the Sun's change in velocity relative to the center of mass of the system as Saturn completes half an orbit is effectively zero.
The problem here is asking for the change in velocity of the Sun relative to the center of mass of the Sun-Saturn system as Saturn completes half an orbit. This is a situation involving orbital physics and center of mass systems.
However, in an isolated two-body orbit system like this, the center of mass does not change velocity - it would remain constant, not unless acted upon by an outside force, which the problem instructs us to ignore.
Saturn and the Sun both orbit around their common center of mass (their barycenter). Given that the Sun is immensely more massive than Saturn, this center of mass is located very close to the center of the Sun.
So, while the Sun does indeed move a little due to Saturn's influence, the change in velocity of Sun relative to the center of mass of the system during the time Saturn completes half an orbit, for all intents and purposes, is zero.
This is especially true unless the problem specifically mentions that the Sun is initially at rest with respect to the center of mass. In any other case, the relative velocity remains constant and hence the change is zero.
#SPJ3
Answer:
the second derivative of y with respect to time gives the transverse acceleration of an element on a string as a wave moves along an x axis along the string
Explanation:
This is because the transverse wave movement of particles take place in direction 90° to direction of movement of the wave (x) itself, so second derivative of y with respect to time (t)is what will be required