Answer:
An example is the formation of ATP, which is an endergonic process and is coupled to the dissipation of a proton gradient.
Explanation:
Hope this helped!
Answer:
139.33 g of magnesium chloride, MgCl2.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(aq)
Next, we shall determine the mass of Mg that reacted and the mass of MgCl2 from the balanced equation.
This is illustrated below:
Molar mass of Mg = 24 g/mol
Mass of Mg from the balanced equation = 1 x 24 = 24 g
Molar mass of MgCl2 = 24 + (2x35.5) = 95 g/mol
Mass of MgCl2 from the balanced equation = 1 x 95 = 95 g
From the balanced equation above,
24 g of Mg reacted to produce 95 g of MgCl2.
Finally, we shall determine the mass of MgCl2 produced by reacting 35.2 g of Mg.
This can be obtained as follow:
From the balanced equation above,
24 g of Mg reacted to produce 95 g of MgCl2.
Therefore, 35.2 g of Mg will react to produce = (35.2 x 95)/24 = 139.33 g of MgCl2.
From the calculations made above, 139.33 g of magnesium chloride, MgCl2 were produced.
Answer:
113 km³
Explanation:
Step 1: Given data
Radius of the meteor (r): 3 km
Step 2: Calculate the volume (V) of the meteor
The meteor is spherical. Given the radius (r), we can calculate the volume of a sphere using the following expression.
V = 4/3 × π × r³
V = 4/3 × π × (3 km)³
V = 4/3 × π × 27 km³
V = 113 km³
The volume of the meteor is 113 km³.
Answer:
Hydrogen bonding
London dispersion forces
Explanation:
The most pronounced and consequential intermolecular forces at play has to be hydrogen bonding due to the dipole created between the oxygen and hydrogen in the hydroxyl group. And then to a lesser extent there are very weak London dispersion forces that are always going to be there in between any two molecules of any species.
B) theoretical yield
C) percent yield
Answer:
A) actual yield
Explanation:
Theoretical yield is the amount of product expected based on the stoichiomety.
Percent yield is the actual yield over the theoretical yield.
Answer:
The correct option is: B) H₂0 and OH⁻ as a conjugate pair
Explanation:
According to Brønsted-Lowry theory, theacids are the chemical substances that form a conjugate base by donating a proton and bases are the chemical substances that form conjugate acid by accepting a proton.
In the given chemical reaction: PO₄³⁻(aq) + H₂O(l) ⇄ HPO₄²⁻(aq) + OH⁻(aq)
According to Brønsted-Lowry theory, PO₄³⁻ and OH⁻ are bases. Whereas, H₂O and HPO₄²⁻ are acids.
Also, PO₄³⁻ and HPO₄²⁻ are the conjugate acid-base pair; and H₂O and OH⁻ are the conjugate acid-base pair.
Answer: The mass of hydrogen sulfide that can be dissolved is 2.86 grams.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the gas.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
where,
= Henry's constant =
= partial pressure of hydrogen sulfide gas = 2.42 atm
Putting values in above equation, we get:
To calculate the mass of solute, we use the equation used to calculate the molarity of solution:
We are given:
Molarity of solution = 0.2105 M
Molar mass of hydrogen sulfide = 34 g/mol
Volume of solution = 400.0 mL
Putting values in above equation, we get:
Hence, the mass of hydrogen sulfide that can be dissolved is 2.86 grams.