The sun warming the surface of a rock is
conduction
convection
radiation

Answers

Answer 1
Answer: Radiation..................
Answer 2
Answer: Radiation is your answer...

Related Questions

Calculate the molar mass of each compound given below. c4h4
Write the reaction of ammonia and water. Label the acid, base, conjugate acid and conjugate base.Is Ammonia a weak or strong base?
If the amount of dissolved solute in a solution at a given temperature is greater than the amount that can permanently remain in the solution at that temperature, the solution is said to bea.diluted. b.unsaturated. c.saturated. d.supersaturated.
How many grams of Cl are in 31.2g CF2Cl2
g The electronic structure of which ONE of the following species cannot be adequately described by a single Lewis formula? (In other words, the electronic structure of which one can only be described by drawing two or more resonance structures?) A) C2H4 B) SO3 2– C) SO3 D) C3H8 E) HCN

Find the mole ratio of H2SO4 and H20 in the equation Fe2O3 + H2SO4 → Fe2(SO4)3 + H20.

Answers

Explanation:

Fe2O3 +3 H2SO4 → Fe2(SO4)3 + 3H20.

Therefore the ratio is 3:3

Which is more water soluble hexanoic acid or sodium hexanoate?

Answers

Answer:

Explanation:

Hexanoic acid [CH 3(CH 2) 4COOH] is barely soluble in water (about 1.0 g/100 g of water). Palmitic acid [CH 3(CH 2) 14COOH], with its large nonpolar hydrocarbon component, is essentially insoluble in water. The carboxylic acids generally are soluble in such organic solvents as ethanol, toluene, and diethyl ether.

hope this help ya~

Describe the relationship between predator and prey in a balanced ecosystem. Please help I'll give brainliest.

Answers

Answer:

predators are controlling the population of the species who are below them in the food pyramid . Also if the population of the preys decrease it will alternatively reduce the predator population .therefore the predator prey relationship balance an eco system.

A 3.0 L flask containing helium at 145 mmHg is connected by a closed valve to a 2.0 L flask containing argon at 355 mmHg. When the valve is opened and the gases are allowed to mix equally in the two flasks, what is the total pressure (in mmHg) in the two connected flasks after mixing ?

Answers

Answer:

Assuming that both helium and argon act like ideal gases, the total pressure after mixing would be approximately 229\; \rm mmHg.  

Explanation:

By the ideal gas equation, P\cdot V = n \cdot R \cdot T, where

  • P is the pressure of the sample.
  • V is the volume of the container.
  • n is the number of moles of gas particles in the sample.
  • R is the ideal gas constant.
  • T is the temperature of the sample.

Rewrite to obtain:

  • \displaystyle n = (P \cdot V)/(R\cdot T), and
  • \displaystyle P = (n \cdot R \cdot T)/(V).

Assume that the two samples have the same temperature, T. Also, assume that mixing the two gases did not affect the temperature.

Apply the equation \displaystyle n = (P \cdot V)/(R\cdot T) to find the number of moles of gas particles in each container:

  • In the helium container, V = 3.0\; \rm L and P = \rm 145\; mmHg. Hence, \displaystyle n_1 = (P\cdot V)/(R \cdot T) = \frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T}.
  • In the argon container, V = 2.0\; \rm L and P = 355\; \rm mmHg. Hence, \displaystyle n_2 = (P\cdot V)/(R \cdot T) = \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}.

After mixing, V = 2.0 + 3.0 = 5.0\; \rm L. Assuming that temperature T stays the same.

\displaystyle n_1 + n_2 = \frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T} + \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}.

Apply the equation \displaystyle P = (n \cdot R \cdot T)/(V) to find the pressure after mixing.

\begin{aligned}P &= \displaystyle \frac{\displaystyle \displaystyle \left(\frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T} + \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}\right) \cdot R \cdot T}{5.0\; \rm L} \n &= (3.0\; \rm L * 145\; \rm mmHg + 2.0\; \rm L * 355\; \rm mmHg)/(5.0\; \rm L) \n &\approx 229\; \rm mmHg\end{aligned}.

Answer:

The total pressure is 229 atm

Explanation:

Step 1: Data given

Volume of helium flask = 3.0 L

Pressure helium flask = 145 mm Hg

Volume of argon flask = 2.0 L

Pressure argon flask = 355 mmHg

total volume = 5.0 L

Step 2: Partial pressure helium

pHe = 145 *(3/5) = 87.0 atm

Step 3: Calculate pressure argon

pAr = 355*(2/5) = 142.0 atm

Step 4: Calculate total pressure

Total pressure = 87.0 + 142.0 atm

Total pressure = 229 atm

The total pressure is 229 atm

What bond distance is expected to be longest?1. A carbon-carbon bond with a bond order of 2
2. A carbon-carbon bond with a bond order of 3
3. A carbon-carbon bond with a bond order of O
4. carbon-carbon bond with a bond order of 1​

Answers

Answer:

Bond length of C=C is largest(134 pm) because both the carbon atoms have same electronegativity. In case of C=O. and C=N carbon is bonded to highly electronegative atoms so bond length is shoreter as compared to C=C

The reform reaction between steam and gaseous methane () produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen. Suppose a chemical engineer studying a new catalyst for the reform reaction finds that liters per second of methane are consumed when the reaction is run at and . Calculate the rate at which dihydrogen is being produced. Give your answer in kilograms per second. Round your answer to significant digits..

Answers

The reform reaction between steam and gaseous methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen.

Suppose a chemical engineer studying a new catalyst for the reform reaction finds that 924 liters per second of methane are consumed when the reaction is run at 261°C and 0.96atm. Calculate the rate at which dihydrogen is being produced. Give your answer in kilograms per second. Round your answer to 2 significant digits.

Answer: The rate at which dihydrogen is being produced is 0.12 kg/sec

Explanation:

The balanced chemical equation is ;

CH_4+H_2O\rightarrow 3H_2+CO

According to ideal gas equation:

PV=nRT

P = pressure of gas = 0.96 atm

V = Volume of gas = 924 L

n = number of moles

R = gas constant =0.0821Latm/Kmol

T =temperature =261^0C=(261+273)K=534K

n=(PV)/(RT)

n=(0.96atm* 924L)/(0.0820 L atm/K mol* 534K)=20.2moles

According to stoichiometry:

1 mole of methane produces = 3 moles of hydrogen

Thus 20.2 moles of methane produces = (3)/(1)* 20.2=60.6 moles of hydrogen

Mass of hydrogen =moles* {\text {Molar mass}}=60.6mol* 2g/mol=121.2g=0.12kg

Thus the rate at which dihydrogen is being produced is 0.12 kg/sec