Answer: The agents of soil erosion are the same as of other types of erosion for example water, ice, wind, and gravity. Soil erosion is more likely where the ground has been disturbed by agriculture, grazing animals, logging, mining, construction, and recreational activities.Basically what I mean is some causes of solid loss is mining, construction
Answer:
4,25% v/v H3PO4
Explanation:
The concentration of phosphoric acid (H3PO4) is expressed as a volume / volume percentage, which means:
%v/v H3PO4 = (mL of pure H3PO4/mL of solution)*100%
In other words, we are only interested in the final volume of the solution to which the phosphoric acid was diluted, regardless of its composition. Which in this case is 1 L (1000 mL).
We can then apply the following equation, commonly used to calculate the initial or final concentration (or volume) of a substance when it is diluted:
Ci*Vi=Cf*Vf
Where:
Ci, is the initial concentration of the substance.
Vi, the initial volume of the substance
Cf, the final concentration reached after dilution
Vf, the final volume of the solution at which the substance was diluted
In this case, the incognite would be the final concentration of H3PO4 reached after dilution, that is, Cf. Therefore, we proceed to clear Cf from the previous equation and replace our data:
Cf = (Ci*Vi)/Vf = (85% v/v * 50 mL)/1000 mL = 4,25 % v/v
Note that being up and down in the division, the mL unit is canceled to result in% v / v.
Answer:
Diatomic Molecule
Explanation:
The vapor pressure of the solution would be as follows:
torr
Given that,
Vapor pressure of Carbon Disulfide torr
Naphthalene's mass
Naphthalene's molar mass
Now,
We know that
Number of moles
Mass ×
×
So,
Number of moles of Carbon Disulfide ×
moles of Carbon Disulfide
Number of moles of Naphthalene:
Number of moles
Now,
Total number of moles :
moles
Mole fraction of each compound in solution :
Carbon Disulfide:
2.567 / 2.65
Naphthalene
0.083 / 2.65
According to Raoult's:
P ×
Carbon Sulfide = Solvent
Mole fraction of solvent
Vapour pressure of the pure solvent
×
torr
Thus, " torr" is the correct answer.
Learn more about "Pressure" here:
Answer:
344.5764 torr
Explanation:
Molar mass of naphthalene = 128.2g/mol
Mass of naphthalene = 10.60 g
Carbon disulfide:
Molar mass= 76.14g/mol ;
volume = 155mL ;
density = 1.261 g/mL
Vapour pressure = 355.6 torr
Number of moles = mass / molar mass
CS2:
Mass = density × volume
Number of moles = (density × volume) / molar mass
Number of moles = (1.261 * 155) / 76.14 = (195.455 / 76.14) = 2.567 moles of CS2
Number of moles of C8H10:
Number of moles = 10.60 / 128.2 = 0.083 C8H10
Total number of moles :
2.567 + 0.083 = 2.65 moles
Mole fraction of each compound in solution :
CS2 :
2.567 / 2.65 = 0.969
C8H10:
0.083 / 2.65 = 0.031
According to Raoult's:
Psolution = Xsolvent × Posolvent
CS2 = solvent
Xsolvent = Mole fraction of solvent
Posolvent = Vapour pressure of pure solvent
Psolution = 0.969 × 355.6 torr = 344.5764 torr
Atomic Number : 35
Neutrons: 45
Charge; -1