The total electric force exerted by point charges -3.5 μC and 3.5 μC on a point charge 4.0 μC is zero. This is because the forces due to each of these charges on the third charge are equal in magnitude but opposite in direction, hence they cancel each other completely.
The question asks for the magnitude and direction of the total electric force exerted by point charges -3.5 μC and 3.5 μC on a point charge 4.0 μC. This is related to Coulomb's Law, which describes the force between charged objects. Specifically, Coulomb's Law states that the force (F) between two point charges is directly proportional to the product of their charges (q1*q2) and inversely proportional to the square of the distance (r) between them. It also depends on the permittivity of free space (ε₀).
First, you would determine the force between each of the point charges and the third charge separately, and then superpose these forces to find the total force. The force in each case can be calculated using the equation F = k*|q1*q2|/r², where k is Coulomb's constant (8.99 * 10^9 N.m²/C²). You would need to make sure you take into account the signs of the charges when deciding the directions of the forces and when superposing the separate forces.
Assume upwards to be the positive direction. The 3.5 uC charge forces and -3.5 uC charge forces on the 4 uC charge would be opposite in direction (one downwards and one upwards) and identical in magnitude. Therefore, they will cancel each other out, and hence, the total electric force on the third charge (4 uC) will be zero.
#SPJ2
Answer:
The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm
Explanation:
Given;
wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m
maximum kinetic energy of the ejected electron, K.E = 0.92 eV
let the work function of the aluminum metal = Ф
Apply photoelectric equation:
E = K.E + Ф
Where;
Ф is the minimum energy needed to eject electron the aluminum metal
E is the energy of the incident light
The energy of the incident light is calculated as follows;
The work function of the aluminum metal is calculated as;
Ф = E - K.E
Ф = 8.02 x 10⁻¹⁹ - (0.92 x 1.602 x 10⁻¹⁹)
Ф = 8.02 x 10⁻¹⁹ J - 1.474 x 10⁻¹⁹ J
Ф = 6.546 x 10⁻¹⁹ J
The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;
In plate tectonics theory, transform boundaries occur when two plates slide past each other, divergent boundaries occur when two plates move away from each other, and convergent boundaries occur when two plates collide. A volcano is most likely to occur at a divergent boundary because the plates move away from each other, allowing magma from the mantle to reach the surface and create new crust.
In plate tectonics theory, Transform boundaries occur when two plates slide past each other horizontally, creating earthquakes. Divergent boundaries occur when two plates move away from each other, creating volcanic activity.
Convergent boundaries occur when two plates collide, and depending on the type of plates involved, can result in volcanic activity as one plate is forced beneath the other.
A volcano is most likely to occur at a divergent boundary because the plates move away from each other, allowing magma from the mantle to reach the surface and create new crust.
The Richter scale indicates the magnitude of an earthquake. The figure drawn by the needle during shaking is an outcome of earthquake's energy. This energy is what results in seismic waves travelling through various layers of earth causing shaking on the surface.
#SPJ12
A) more than 100 J.
B) Not enough information given.
C) less than 100 J.
D) 100 J.
To solve this problem we could apply the concepts given by the conservation of Energy.
During the launch given in terms of kinetic energy and reaching the maximum point of the object, the potential energy of the body is conserved. However, part of all this energy is lost due to the work done by the friction force due to friction with the air, therefore
The potential and kinetic energy are conserved and are the same PE = KE and this value is equivalent to 100J, therefore
The kinetic energy will ultimately be less than 100J, so the correct answer is C.
1. Which terms (if any) are positive?
2. Which terms (if any) are negative?
3. Which terms (if any) are zero?
b) Determine the energy output by the athlete in SI unit.
c) Determine his metabolic power in SI unit.
d) Another day he performs the same task in 1.2 s.
1. Is the metabolic energy that he expends more, less, or the same?
2. Is his metabolic power more, less, or the same?
Answer:
Explanation:
(ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W)
ΔK is increase in kinetic energy . As the athelete is lifting the barbell at constant speed change in kinetic energy is zero .
ΔK = 0
ΔUg is change in potential energy . It will be positive as weight is being lifted so its potential energy is increasing .
ΔUg = positive
ΔUs is change in the potential energy of sportsperson . It is zero since there is no change in the height of athlete .
ΔUs = 0
ΔEth is change in the energy of earth . Here earth is doing negative work . It is so because it is exerting force downwards and displacement is upwards . Hence it is doing negative work . Hence
ΔEth = negative .
b )
work done by athlete
= 400 x 2 = 800 J
energy output = 800 J
c )
It is 25% of metabolic energy output of his body
so metalic energy output of body
= 4x 800 J .
3200 J
power = energy output / time
= 3200 / 1.6
= 2000 W .
d )
1 ) Since he is doing same amount of work , his metabolic energy output is same as that in earlier case .
2 ) Since he is doing the same exercise in less time so his power is increased . Hence in the second day his power is more .
Positive, negative, and zero terms in the energy equation. Calculation of energy output and metabolic power. Comparison of metabolic energy and power for different time durations.
To apply the energy equation to the system, we need to determine whether each term is positive, negative, or zero:
To determine the energy output by the athlete, we can calculate the work done on the barbell using the formula W = ΔUg. In this case, the work done is equal to the change in gravitational potential energy, which is equal to mgh. Thus, W = 400 N × 2.0 m = 800 J. So the energy output by the athlete is 800 J.
The metabolic power can be calculated using the equation P = W / t, where P is the power, W is the work done, and t is the time taken. Substituting the given values, P = 800 J / 1.6 s = 500 W. Therefore, the metabolic power of the athlete is 500 W. If the task is performed in a faster time, the metabolic energy expended will be the same. However, the metabolic power will be greater as the work is done in less time.
#SPJ11
Answer:
a
Explanation:
a push or a pull that occurs when an object interacts with another object or field.
pls mrk me brainliest