Answer:
Endothermic
Explanation:
In order to melt the ice cube, heat is required, so the process is endothermic. Endothermic reaction In an endothermic reaction, the products are higher in energy than the reactants. Therefore, the change in enthalpy is positive, and heat is absorbed from the surroundings by the reaction.
Answer:
ΔH°rxn = 54.08 kJ
Explanation:
Let's consider the following equations.
a) ClO(g) + O₃(g) ⇄ Cl(g) + 2 O₂(g) ΔH°rxn = –29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
We have to determine the value of heat of reaction for the following reaction: Cl(g) + O₃(g) ⇄ ClO(g) + O₂(g)
According to Hess's law, the enthalpy change in a chemical reaction is the same whether the reaction takes place in one or in several steps. That means that we can find the enthalpy of a reaction by adding the corresponding steps and adding their enthalpies. According to Lavoisier-Laplace's law, if we reverse a reaction, we also have to reverse the sign of its enthalpy.
Let's reverse equation a) and add it to equation b).
-a) Cl(g) + 2 O₂(g) ⇄ ClO(g) + O₃(g) ΔH°rxn = 29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
-------------------------------------------------------------------------------------------------
Cl(g) + 2 O₂(g) + 2 O₃(g) ⇄ ClO(g) + O₃(g) + 3 O₂(g)
Cl(g) + O₃(g) ⇄ ClO(g) +O₂(g)
ΔH°rxn = 29.90 kJ + 24.18 kJ = 54.08 kJ
The heat of the reaction (ΔH°rxn) for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g) is calculated using Hess's Law. The sum of the heat of reversed first reaction and the second reaction provided is 54.08 kJ.
The chemistry question asks to determine the heat of the reaction for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g). In Hess's Law, the heat of the reaction or ΔH for a reaction can be calculated from the sum of the heats of other reactions that sum to the desired reaction. In this case, we want to reverse the first reaction provided (which changes the sign of ΔH) and add it to the second reaction provided.
So, reversing the first reaction we get: Cl(g) + 2 O2(g) ? ClO(g) + O3(g) ?H°rxn = 29.90 kJ
Adding this to the second reaction: 2 O3(g) ? 3 O2(g), ?H°rxn = 24.18 kJ, gives the reaction Cl(g) + O3(g) ? ClO(g) + O2(g). Adding the ΔH values gives the ΔH for this reaction: 29.90 kJ + 24.18 kJ = 54.08 kJ. So, ?H°rxn for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g) is 54.08 kJ.
#SPJ11
Answer:
Speed of wave = 1500 m/s
Explanation:
Given data:
Frequency of wave = 10 Hz
Wavelength of wave = 150 m
Speed of wave = ?
Solution:
Formula:
Speed of wave = Frequency × Wavelength
Now we will put the values in formula.
Speed of wave = 10 Hz × 150 m
Speed of wave = 1500 m/s
Hz = s⁻¹
Onoble gases
O halogens
O transitional metals
Group/Family 18 on the periodic table is called the noble gases.
Group/Family 18 on the periodic table is called the noble gases. The noble gases are a group of chemical elements that have full valence electron shells, which makes them stable and nonreactive. This group includes elements like helium, neon, argon, krypton, xenon, and radon.
Answer:
4 pairs are needed for the bonds, leaving 1 lone pair. Each double bond uses 2 bond pairs and can be thought of as a single unit. There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement.
Answer:
Hail pallets forms inside of cumulonimbus clouds
Explanation:
Answer: cumulonimbus hope it helps pls stay safe
A. Gain 2 electrons
B. Gain 3 electrons
C. Lose 2 electrons
D. Lose 3 electrons
Nitrogen changes from +5 in - to +2 in NO. This means nitrogen has gained 3 electrons. Option B
To determine the change in electrons for nitrogen in the given reaction, we need to compare the oxidation state of nitrogen in the reactant (-) and the product (NO).
In the reactant, -, nitrogen is in the +5 oxidation state. This is because oxygen has an oxidation state of -2, and there are three oxygen atoms in -. Therefore, nitrogen must have an oxidation state of +5 to balance the overall charge of -.
In the product, NO, nitrogen is in the +2 oxidation state. This is because oxygen has an oxidation state of -2, and there is only one oxygen atom in NO. Therefore, nitrogen must have an oxidation state of +2 to balance the overall charge of NO.
By comparing the oxidation states of nitrogen in the reactant and the product, we can determine the change in electrons. The change in oxidation state corresponds to the change in the number of electrons gained or lost by the nitrogen atom.
In this case, nitrogen changes from +5 in - to +2 in NO. This means nitrogen has gained 3 electrons.
Therefore, the correct answer is B) Gain 3 electrons.
The nitrogen atom undergoes a reduction because it gains electrons, reducing its oxidation state from +5 to +2 in the reaction.
Option B
for more such question on electrons visit:
#SPJ8