As the mass of an object increases its momentum increases, and it takes more force to change its motion. So, option A.
Mass in motion is quantified by momentum, which is the measure of the amount of mass in motion.
Here,
Momentum of an object, which is under motion can be defined as the product of the mass and velocity of the object.
Momentum, P = mv
According to Newton's second law, the force is defined as the rate of change of momentum, or the momentum per unit time.
F = dP/dt
So, force is proportional to the amount of momentum imparted on the object.
Therefore, if the mass or velocity of the object increases, it will eventually cause the momentum to be increased and as a result, the force required to exert on the object will increase.
Hence,
As the mass of an object increases its momentum increases, and it takes more force to change its motion. So, option A.
To learn more about momentum, click:
#SPJ7
Answer:
A
Explanation:
just did it
Answer:
k = 1/18
Explanation:
Data:
a = -k
to = 0s Vo = 12m/s
t = 6s the particle chage it's moviment, so v = 0 m/s
We know that acceleration is the derivative of velocity related to time:
rearranging...
Then, we must integrate both sides:
V = 0 because the exercise says that the car change it's direction:
k = 1/6
In order to find X - Xo we must integer v*dT = dX
so...
integrating...
X - Xo = 54m
Answer:
The underwater angles of refraction for the blue and red components of the light is 47.8° and 48.2°
Explanation:
Using the Snell's law
n1 * sin Ф1 = n2 sin Ф2
1 * sin 83 = n2 sin Ф2
Ф2 =
Red light
n2 = 1.331
Ф2 = °
Blue light
n2 = 1.340
Ф2 = °
Answer:
electric flux is 280 Nm²/C
so correct option is D 280 Nm²/C
Explanation:
radius r = 0.50 m
angle = 30 degree
field strength = 713 N/C
to find out
the electric flux through the surface
solution
we find here electric flux by given formula that is
electric flux = field strength × area× cos∅ .......1
here area = πr² = π(0.50)²
put here all value in equation 1
electric flux = field strength × area× cos∅
electric flux = 713 × π(0.50)² × cos60
we consider the cosine of the angle between the direction of the field and the normal to the surface of the disk
so we use cos60
electric flux = 280 Nm²/C
so correct option is D 280 Nm²/C
Answer:
it A
Explanation:
Its a negative ion that hss one less valence electron than a netural bromine atom
Answer:
3 fans per 15 A circuit
Explanation:
From the question and the data given, the light load let fan would have been
(60 * 4)/120 = 240/120 = 2 A.
Next, we add the current of the fan motor to it, so,
2 A + 1.8 A = 3.8 A.
Since the devices are continuos duty and the circuit current must be limited to 80%, then the Breaker load max would be
0.8 * 15 A = 12 A.
Now, we can get the number if fans, which will be
12 A/ 3.8 A = 3.16 fans, or approximately, 3 fans per 15 A circuit.
The total power draw of each fan is 3.8 amperes. Thus, considering a limit of 80% usage of 15 amperes, only 3 fans can be connected to a single circuit to keep the total power draw below 12 amperes.
The question is asking how many ceiling fans, each with a certain power draw, can be connected on a single 15-ampere circuit, considering that each fan is a continuous-duty device. The power draw of each fan when the motor is operated at high speed and the light kit is fully loaded is the sum of the power draw of the motor and the light kit. As the power draw of each motor is 1.8 amperes and the light kit is 240 watts or 2 amperes (calculated using the formula Power = Voltage x Current; assuming a voltage of 120 volts), the total power draw of each fan is 3.8 amperes. Considering the limit of 80% of the continuous load, only 12 amperes (80% of 15) can be used. Thus, 3 fans can be connected to the circuit as it reaches 11.4 amperes, close enough to the 12 amperes limit.
#SPJ3
Answer:
True
Explanation:
This is a representation of Gauss law.
Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.