The interatomic spring stiffness for tungsten is determined from Young's modulus measurements to be 90 N/m. The mass of one mole of tungsten is 0.185 kg. If we model a block of tungsten as a collection of atomic "oscillators" (masses on springs), what is one quantum of energy for one of these atomic oscillators? Note that since each oscillator is attached to two "springs", and each "spring" is half the length of the interatomic bond, the effective interatomic spring stiffness for one of these oscillators is 4 times the calculated value given above. Use these precise values for the constants: ℏ = 1.0546 10-34 J · s (Planck's constant divided by 2π) Avogadro's number = 6.0221 1023 molecules/mole kB = 1.3807 10-23 J/K (the Boltzmann constant)

Answers

Answer 1
Answer:

Answer:

Explanation:

solution below

Answer 2
Answer:

Final answer:

The quantum of energy for one atomic oscillator in tungsten, given the effective interatomic spring stiffness of 360 N/m, the mass of one tungsten atom as 3.074 x 10^-25 kg, and the reduced Planck's constant of 1.0546 x 10^-34 J · s, can be calculated to be approximately 1.33 x 10^-21 J.

Explanation:

To calculate the quantum of energy for one atomic oscillator in tungsten, we will consider the model of an atom being connected to two springs, both having an effective interatomic spring stiffness of four times the given value (90 N/m). This value thus becomes 360 N/m.

One mole of tungsten has a mass of 0.185 kg, thus the mass of one atom can be determined by dividing this value by Avogadro's number (6.0221 x 10^23 molecules/mole), which gives approximately 3.074 x 10^-25 kg.

The quantum of energy, or the energy of one quantum (the smallest possible energy increment), is given by the formula E = ħω, where ħ is the reduced Planck's constant (1.0546 x 10^-34 J · s) and ω is the angular frequency, given by sqrt(k/m), where k is the spring constant and m is the mass.

Substituting the known values into these equations gives ω= sqrt((360)/(3.074 x 10^-25)) and E= (1.0546 x 10^-34) x sqrt((360)/(3.074 x 10^-25)), which results in a quantum of energy of approximately 1.33 x 10^-21 J.

Learn more about Quantum Energy here:

brainly.com/question/28175160

#SPJ3


Related Questions

An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote island, causing a lot of damage. Is the water that hit the island the same water that was above the earthquake on the ocean floor?A No, the water from above the earthquake stayed in the same place and only the energy was transferred.B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.C Yes, the water particles moved toward the island while the energy remained above the earthquake.
A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.When it reaches the highest point of its trajectory, its speed is150 m/s. In a second trial with the same projectile, the initialspeed is the same but the angle is now 37 degree with thehorizontal. At its highest point in this trajectory, the velocityof the projectile would be what?
A ride at an amusement park moves the riders in a circle at a rate of 6.0 m/s. If the radius of the ride is 9.0 meters, what is the acceleration of the ride?4.0 m/s20.67 m/s20.075 m/s254 m/s2
In a warehouse, the workers sometimes slide boxes along the floor to move them. Two boxes were sliding toward each other and crashed. The crash caused both boxes to change speed. Based on the information in the diagram, which statement is correct? In your answer, explain what the forces were like and why the boxes changed speed.Box 1 has more mass than Box 2.Box 1 and Box 2 are the same mass.Box 1 has less mass than Box 2.**YOU MUST BE DESCRIPTIVE! Any short answers not explaining it wont get brainliest!**
Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 2 seconds.

A 2.13-kg object on a frictionless horizontal track is attached to the end of a horizontal spring whose force constant is 5.00 N/m. The object is displaced 3.54 m to the right from its equilibrium position and then released, initiating simple harmonic motion. (a) What is the force (magnitude and direction) acting on the object 3.50 s after it is released

Answers

Answer:

17.54N in -x direction.

Explanation:

Amplitude (A) = 3.54m

Force constant (k) = 5N/m

Mass (m) = 2.13kg

Angular frequency ω = √(k/m)

ω = √(5/2.13)

ω = 1.53 rad/s

The force acting on the object F(t) = ?

F(t) = -mAω²cos(ωt)

F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)

F(t) = -17.65 * cos (5.355)

F(t) = -17.57N

The force is 17.57 in -x direction

What is an atomic nucleus​

Answers

Answer:

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.

Explanation:

Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979.(a) He flew for 169 min at an average velocity of 3.53 m/s in a direction 45° south of east. What was his total displacement?

(b) Allen encountered a headwind averaging 2.00 m/s almost precisely in the opposite direction of his motion relative to the Earth. What was his average velocity relative to the air?

(c) What was his total displacement relative to the air mass?

Answers

Answer:

a) s=35794.2\ m

b) v_w=3.53\ m.s^(-1)

c) s_w=56074.2\ m

Explanation:

Given:

a)

duration of flight, t=169* 60=10140\ s

velocity of flight, v=3.53\ m.s^(-1)

direction of flight, 45^(\circ) to the south of east

Now the total displacement:

s=v.t

s=3.53* 10140

s=35794.2\ m

b)

Velocity of air, v_a=2\ m.s^(-1)

When the aircraft encounters a headwind in the opposite direction to the velocity of motion then the speed of the aircraft is lowered with respect to the ground.

But when the speed is observed with respect to the wind the reduced velocity of the aircraft is observed from an opposite moving wind having a magnitude equal to the difference in velocity of the aircraft. This results in no change in the apparent velocity of the aircraft.

Mathematically:

Velocity of the aircraft with respect to the ground:

v_(g)=v-v_a

v_(g)=3.53-2

v_g=1.53\ m.s^(-1)

Now the velocity of the aircraft with respect to the wind:

v_w=v_g+v_a

v_w=1.53+2

v_w=3.53\ m.s^(-1)

c)

Now the total displacement with respect to the wind:

s_w=v_w.t+v_a.t

s_w=3.53* 10140+2* 10140

s_w=56074.2\ m

Four +2 µC point charges are at the corners of a square of side 2 m. Find the potential at the center of the square (relative to zero potential at infinity) for each of the following conditions.(a) All the charges are positive(b) Three of the charges are positive and one is negative(c) Two are positive and two are negative

Answers

Answer:

(a) 51428.59 J/C

(b) 25714.29 J/C

(c) 0 J/C

Explanation:

Parameters given:

Q1 = 2 * 10^-6 C

Q2 = 2 * 10^-6 C

Q3 = 2 * 10^-6 C

Q4 = 2 * 10^-6 C

=> Q1 = Q2 = Q3 = Q4 = Q

Side of the square = 2m

The center of the square is the midpoint of the diagonals, i.e. Using Pythagoras theorem:

BD² = 2² + 2²

BD² = 8

BD = √(8) = 2.8m

OD = 1.4m

(The attached diagram explains better)

Hence, the distance between the center and each point charge, r, is 1.4m.

Electric Potential, V = kQ/r

k = Coulombs constant

(a) If all charges are positive:

V(Total) = V1 + V2 + V3 + V4

V1 = Potential due to Q1

V2 = Potential due to Q2

V3 = Potential due to Q3

V4 =Potential due to Q4

Since Q1 = Q2 = Q3 = Q4 = Q

=> V1 = V2 = V3 = V4

=> V(Total) = 4V1

V  = (4 * 9 * 10^9 * 2 * 10^-6)/1.4

V = 51428.59J/C

(b) If 3 charges are positive and 1 is negative:

Since Q1 = Q2 = Q3 = Q

and Q4 = -Q

The total potential becomes:

V(Total) = V1 + V2 + V3 - V4

Since V1, V2, V3 and V4 have the same value,

V(Total) = V1 + V2

V(Total) = 2V1

V(Total) = (2 * 9 * 10^9 * 2 * 10^-6)/1.4

V(Total) = 25174.29 J/C

(c) Two charges are positive and two are negative:

Since Q1 = Q2  = Q

and Q3 = Q4 = -Q

The total potential becomes:

V(Total) = V1 + V2 - V3 - V4

Since V1, V2, V3 and V4 have the same value,

V(Total)  = 0 J/C

g Adjacent rows in the first part of the experiment are found to have potentials of 3.66 V and 4.22 V. If the distance between rows is found to be 0.4 cm, what is the magnitude of the electric field at the location between the rows

Answers

Answer:

E=140V/m

Explanation:

If the electric field is uniform, the electric field between two points at potentials V_1 and V_2 which are separated by a distance d will be given by the formula:

E=(\Delta V)/(d)

So in our case, we have E=(4.22V-3.66V)/(0.004m)=140V/m

How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole

Answers

Answer: hello your question is incomplete below is the complete question

Water stands at a depth H in a large open tank whose side walls are vertical  . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole

answer :

At Height ( h ) from the bottom of Tank

Explanation:

Determine how far above the bottom of the tank a second hole be cut

For the second hole to have the same range as the first hole

Range of first hole = Velocity of efflux of water * time of fall of water

                               =  √ (2gh) * √( 2g (H - h) / g)

                               = √ ( 4(H-h) h)

Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank

Final answer:

The second hole should be cut at the same height as the first hole to have the same range for the stream.

Explanation:

In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.

Learn more about Range of stream from a hole here:

brainly.com/question/24130937

#SPJ3