ANSWER:
D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures
STEP-BY-STEP EXPLANATION:
One of the main reasons fusion power cannot be harnessed is that its power requirements are incredibly high. For fusion to occur, a temperature of at least 100,000,000°C is needed.
Therefore, the correct answer is D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures
B. What is the change in the total momentum of the pair?
C. What is the magnitude of the change in the momentum Δp2, of mass M2?
Answer:
a). ΔP1=-2.4
b). Pp=0 F=0
c). ΔP2=2.4
Explanation:
Initial momentum
Final momentum
The change of momentum m1 is:
a).
ΔP1=
ΔP1=
ΔP1=
ΔP1=
ΔP1=
b).
The law of conservation of energy in this case there is not external forces so the momentum of the pair change is equal to zero
P=0
Fx=0
c).
ΔP1+ΔP2=0
ΔP2=-ΔP1
ΔP2=-
ΔP2=
The magnitude of the change in momentum of mass M1 is 2400 Daltons*m/s. The change in the total momentum of the pair is 2000 Daltons*m/s. The magnitude of the change in momentum of mass M2 is -400 Daltons*m/s.
A. To find the magnitude of the change in momentum of mass M1, we use the formula Δp1 = m1 * Δv1, where m1 is the mass of M1 and Δv1 is the change in velocity of M1. Since M1 simply changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, Δp1 = m1 * (2v1) = 6 * (2 * 200) = 2400 Daltons*m/s.
B. The change in the total momentum of the pair is equal to the sum of the changes in momentum of M1 and M2. Since M2 also changes direction, its change in velocity is equal to 2 times its original velocity. Therefore, the change in the total momentum is Δp1 + Δp2 = 2400 Daltons*m/s + (-400 Daltons*m/s) = 2000 Daltons*m/s.
C. To find the magnitude of the change in momentum of mass M2, we use the same formula as in part A, but with the values for M2. Δp2 = m2 * Δv2 = 1 * (2 * (-200)) = -400 Daltons*m/s.
#SPJ3
Answer:
Explanation:
We can use Ohm's Law to find the resistance R of a wire that carries a current I under a given potential difference:
Answer:
Ohm's law states that I=V/R (Current=volts divided by resistance). Since we're looking for resistance, we'll rewrite it as R=V/I. Then just plug in the numbers; R=84/9, R= 9 1/3 or 28/3. The resistance of the wire is 9.33... or 9 1/3 ohm's, depending on how you wanna write it.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
I would appreciate it!
b) +9.8 m/s^2 throughout
c) -9.8 m/s^2 throughout
d) zero throughout
e) +9.8 m/s^2, then momentarily zero, then -9.8 m/s^2
F12 = ? mN
(b) Find the electric force on q1.
F21 = ? mN
(c) What would your answers for Parts (a) and (b) differ if q2 were -6.0 µC?
To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as
Here
k = Coulomb's Constant
Charge of each object
d = Distance
Our values are given as,
d = 1 m
a) The electric force on charge is
Force is positive i.e. repulsive
b) As the force exerted on will be equal to that act on ,
Force is positive i.e. repulsive
c) If , a negative sign will be introduced into the expression above i.e.
Force is negative i.e. attractive