You have 5 cats and they each have a mass of 4kg per cat. What is the mass of all of them together?

Answers

Answer 1
Answer:

Answer:

It would be 20kg

Explanation:

This would be just 5x4 as there are 5 cats and each are 4kg. You can also add 4, 5 times as well.

I hope Im correct


Related Questions

The most interpersonal constructive passion response to relational conflict is..
Dawn is trying to find out how much weight she can push across the room. She is really trying to find her
A bicycle racer is going downhill at 11.0 m/s when, to his horror, one of his 2.25 kg wheels comes off when he is 75.0 m above the foot of the hill. We can model the wheel as a thin-walled cylinder 85.0 cm in diameter and neglect the small mass of the spokes. (a) How fast is the wheel moving when it reaches the bottom of hill if it rolled without slipping all the way down? (b) How much total kinetic energy does it have when it reaches bottom of hill?
A 10.0kg object is moving at 1 m/s when a force is applied in the direction of the objects motion, causing it to speed up to 4 m/s. If the force was applied for 5s what is the magnitude of the force
Suppose that 600 W of radiation in a microwave oven is absorbed by 250 g of water in a very lightweight cup. Approximately how long will it take to heat the water from 20 C to 80 C?(A) 50 s(B) 100 s(C) 150 s(D) 200 s

A glass plate 2.95 mmmm thick, with an index of refraction of 1.60, is placed between a point source of light with wavelength 600 nmnm (in vacuum) and a screen. The distance from source to screen is 1.25 cm. How many wavelengths are there between the source and the screen?

Answers

Answer:

N_T=2086285.67

Explanation:

Given;

Thickness of the glass plate, x=2.95* 10^(-3)\ m

refractive index of the glass plate, n=1.6

wavelength of light source in vacuum, \lambda=600* 10^(-9)\ m

distance between the source and the screen, d=1.25\ m

Distance travelled by the light from source to screen in vacuum:

d_v=d-x

d_v=1.25-0.00295

d_v=1.24705\ m

So the no. of wavelengths in the vacuum:

N=(d_v)/(\lambda)

N=(1.24705)/(6* 10^(-7))

N\approx2.0784* 10^(6)  .......................(1)

Now we find the wavelength of the light wave in the glass:

n=(\lambda)/(\lambda')

where:

\lambda'= wavelength of light in the medium of glass.

1.6=(600* 10^(-9))/(\lambda')

\lambda'=375* 10^(-9)\ m=375\ nm

Now the no. of wavelengths in the glass:

N'=(x)/(\lambda')

N'=(2.95* 10^(-3))/(375* 10^(-9))

N'=7.8667* 10^(3) ............................(2)

From (1) & (2):

  • total no. of wavelengths are there between the source and the screen:

N_T=N+N'

N_T=2086285.67

What sound frequency could a human detect

Answers

Answer:

People can hear sounds at frequencies from about 20 Hz to 20,000 Hz,

20 Hz up to 20,000 Hz

Brain pls

1. On a force vs. mass graph, what would be the slope of the line?2. On a Free Body Diagram, if the forces are all balanced, what do you know about the
object? Can it be moving?

Answers

1. By Newton's second law,

F = ma

so the slope of the line would represent the mass of the object.

2. If all the forces are balanced, then the object is in equilibrium with zero net force, which in turn means the object is not accelerating. So the object is either motionless or moving at a constant speed.

Final answer:

The slope on a Force vs. Mass graph represents acceleration. In a Free Body Diagram, if all the forces are balanced, the object could be either at rest or moving at a constant velocity.

Explanation:

1. On a Force vs. Mass graph, the slope of the line represents acceleration, according to Newton's second law of motion, which is force equals mass times acceleration (F=ma). The slope of the line is calculated as the change in force divided by the change in mass, which results in acceleration.

2. In a Free Body Diagram, if all the forces are balanced, it means the net force acting on the object is zero. This does not necessarily mean that the object is stationary. The object could be at rest, or it could be moving at a constant velocity. If an object is moving at a constant velocity, it is said to be in equilibrium because the forces are balanced.

Learn more about the Physics of Forces and Motion here:

brainly.com/question/36922560

#SPJ11

What If? What would be the new angular momentum of the system (in kg · m2/s) if each of the masses were instead a solid sphere 15.0 cm in diameter? (Round your answer to at least two decimal places.)

Answers

Final answer:

To find the new angular momentum of the system if each of the masses were solid spheres, calculate the moment of inertia for each sphere using the formula (2/5) × m × r^2. Multiply the moment of inertia of each sphere by the angular velocity of the system to find the new angular momentum.

Explanation:

The angular momentum of a system can be found by multiplying the moment of inertia of the system with its angular velocity.

If each of the masses were instead a solid sphere 15.0 cm in diameter, we would need to calculate the moment of inertia of each sphere using the formula for the moment of inertia of a solid sphere, I = (2/5) × m × r^2, where m is the mass and r is the radius of the sphere.

Once we have the moment of inertia for each sphere, we can multiply it by the angular velocity of the system to find the new angular momentum.

Learn more about Angular momentum here:

brainly.com/question/37906446

#SPJ12

Final answer:

The new angular momentum, given the same angular speed, will be 0.9 times the original, as the moment of inertia for the system is replaced with that of solid spheres of given mass and radius.

Explanation:

The question is asking for the new angular momentum of a sphere with a given diameter if we replace each of the masses in a given system with it. To compute the new angular momentum, it's crucial to recognize that angular momentum (L) is given by the product of the moment of inertia (I) and angular velocity (w). The moment of inertia for a solid sphere is given by (2/5)mr^2, where m is the mass and r is the radius of the sphere. Since angular velocity has not been specified in the question, it would be assumed to remain unchanged.

So, for this specific system, each mass is replaced with a solid sphere of mass 20 kg and radius 15 cm (or 0.15 m). Thus using the formula for solid sphere inertia, I = (2/5)*(20 kg)*(0.15 m)^2 = 0.9 kg*m^2. If w remains the same, then the new angular momentum L = I * w will be 0.9 times the original angular momentum. This is because w is the same but the moment of inertia has a new value due to the shape and size of the new masses.

Learn more about Angular Momentum here:

brainly.com/question/37906446

#SPJ2

A convex mirror with a focal length of 0.25 m forms a 0.080 m tall image of an automobile at a distance of 0.24 m behind the mirror. What is the magnification of the image? Where is the car located, and what is its height? Is the image real or virtual? Is the image upright or inverted? Draw a ray diagram to show where the image forms and how large it is with respect to the object

Answers

Answer:

The distance and height of the object  is 6 m and 2 m.

The image is virtual and upright.

Explanation:

Given that,

Focal length = 0.25 m

Length of image = 0.080 m

Image distance = 0.24 m

We need to calculate the distance of the object

Using formula of lens

(1)/(v)=(1)/(f)+(1)/(u)

Put the value into the formula

(1)/(0.24)=(1)/(0.25)+(1)/(u)

(1)/(u)=(1)/(0.24)-(1)/(0.25)

(1)/(u)=(1)/(6)

u=6\ m

We need to calculate the magnification

Using formula of magnification

m=-(v)/(u)

Put the value into the formula

m=-(0.24)/(-6)

m=0.04

We need to calculate the height of the object

Using formula of magnification

m=(h')/(h)

h=(0.080)/(0.04)

h=2\ m

A convex mirror produce a virtual and upright image behind the mirror.

Hence, The distance and height of the object  is 6 m and 2 m.

The image is virtual and upright.

Answer:

Distance of the object = 6 m

Height of the object = 2 m

Explanation:

Thinking process:

Given that,  

Focal length = 0.25 m  

Length of image = 0.080 m

Image distance = 0.24 m

We need to calculate the distance of the object

Therefore, using formula of lens:

(1)/(u) = (1)/(f)  + (1)/(u)

(1)/(u)  = (1)/(6)

solving, gives u  = 6

The magnification is calculated as follows:

m = -0.24/-6

   = 0.04

The height = 2 m

The diagram yields an image behind the mirror which is upright.

A cars mass is 950kg and it travels at a speed of 35 m/s when it rounds a flat curve of radius 215 m.a. Determine the value of the frictional force exerted on the car.

b. Determine the value of the coefficient of friction between the tires and the road.

Answers

(a) It's the force of (static) friction that keeps the car on the road and prevents it from skidding, and this friction is directed toward the center of the curve.

Recall that centripetal acceleration has a magnitude a of

a = v ² / R

where

v = tangential speed

R = radius of the curve

so that

a = (35 m/s)² / (215 m) ≈ 5.69767 m/s² ≈ 5.7 m/s²

Parallel to the road, the only force acting on the car is friction. So by Newton's second law, we have

F = Fs = ma

where

Fs = magnitude of static friction

m = mass of the car

Then

Fs = (950 kg) (5.7 m/s²) ≈ 5412.79 N ≈ 5400 N

(b) Perpendicular to the road, the car is in equilbrium, so its weight and the normal force of the road on the car are equal in magnitude. By Newton's second law,

N - W = 0

where

N = magnitude of normal force

W = weight

so that

N = W = m g = (950 kg) (9.8 m/s²) = 9310 N

Friction is proportional to the normal force by a factor of µ, the coefficient of static friction:

Fs = µN

Assuming 35 m/s is the maximum speed the car can travel without skidding, we find

µ = Fs / N = (5400 N) / (9310 N) ≈ 0.581395 ≈ 0.58