What minimum value of the coefficient of static friction between the ground and the cheetah's feet is necessary to provide this acceleration

Answers

Answer 1
Answer:

Answer:

Coefficient of static friction  = 1.84

Explanation:

Note:

Top speed = 60 mph

Acceleration of cheetah = 18 m/s²

Find:

Coefficient of static friction

Computation:

Acceleration due to gravity = 9.8 m/s²

Coefficient of static friction  = Acceleration of cheetah / Acceleration due to gravity

Coefficient of static friction  = 18 / 9.8

Coefficient of static friction  = 1.84


Related Questions

(PLEASE HELP ITS DUE SOON ILL MARK BRAINLIEST AND 5 STARS & PLEASE SHOW WORK!!)(And the answer is not 44 I already tried that and it doesn’t start with 4 either)
A uniform, solid sphere of radius 3.75 cm and mass 4.00 kg starts with a purely translational speed of 1.75 m/s at the top of an inclined plane. The surface of the incline is 3.00 m long, and is tilted at an angle of 26.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ????2 at the bottom of the ramp.
A 1850 kg car traveling at 13.8 m/s collides with a 3100 kg car that is initally at rest at a stoplight. The cars stick together and move 1.91 m before friction causes them to stop. Determine the coefficient of kinetic friction between the cars and the road, assuming that the negative acceleration is constant and all wheels on both cars lock at the time of impact.
g Adjacent rows in the first part of the experiment are found to have potentials of 3.66 V and 4.22 V. If the distance between rows is found to be 0.4 cm, what is the magnitude of the electric field at the location between the rows
A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The block rests on a frictionless surface. A 5.30×10?2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.97 m/s and sticking.Part AHow far does the putty-block system compress the spring?

While the block hovers in place, is the density of the block (top left) or the density of the liquid (bottom center) greater?

Answers

Answer:

for the body to float, the density of the body must be less than or equal to the density of the liquid.

Explanation:

For a block to float in a liquid, the thrust of the liquid must be greater than or equal to the weight of the block.

Weight is

        W = mg

let's use the concept of density

        ρ_body = m / V

        m = ρ_body V

        W = ρ_body V g

The thrust of the body is given by Archimedes' law

        B = ρ_liquid g V_liquid

 

as the body floats the submerged volume of the liquid is less than or equal to the volume of the block

       ρ_body V g = ρ_liquid g V_liquid

     

       ρ_body = ρ liquid Vliquido / V_body

As we can see, for the body to float, the density of the body must be less than or equal to the density of the liquid.

A pair of thin spherical shells with radius r and R, r < R are arranged to share a center. What is the capacitance of the system. If a potential difference V is created between the shells, how much energy is stored between them?

Answers

Answer:

Capacitance =  ( 4π×∈×r×R ) / (R-r)

energy store =   ( 4π×∈×r×R )×V²  / (R-r)

Explanation:

given data

radius = r

radius  = R

r < R

to find out

capacitance and how much energy store

solution

we consider here r is inner radius and R is outer radius

so now apply capacitance C formula that is

C = Q/V    .................1

here Q is charge and V is voltage

we know capacitance have equal and opposite charge so

V = \int\limits^R_r {E} \, dx  

here E = Q / 4π∈k²

so

V = Q / 4π∈ \int\limits^R_r {1/k^2} \, dx

V = Q / 4π∈ × ( 1/r - 1/R )

V = Q(R-r)  /   ( 4π×∈×r×R )

so from equation 1

C = Q/V

Capacitance =  ( 4π×∈×r×R ) / (R-r)

and

energy store is  1/2×C×V²

energy store =   ( 4π×∈×r×R )×V²  / (R-r)

A rock is thrown vertically upward with a speed of 14.0 m/sm/s from the roof of a building that is 70.0 mm above the ground. Assume free fall.A) In how many seconds after being thrown does the rock strike the ground? B) What is the speed of the rock just before it strikes the ground?

Answers

Answer:

(A). The time is 5.47 sec.

(B). The speed of the rock just before it strikes the ground is 39.59 m/s.

Explanation:

Given that,

Initial velocity = 14.0 m/s

Height = 70.0 m

(A). We need to calculate the time

Using second equation of motion

s=ut+(1)/(2)gt^2

Put the value into the formula

70=-14* t+(1)/(2)*9.8* t^2

4.9t^2-14t-70=0

t =5.47\ sec

(B). We need to calculate the speed of the rock just before it strikes the ground

Using third equation of motion

v^2=u^2+2gs

Put the value into the formula

v^2=(14)^2+2*9.8*70

v^2=1568

v=√(1568)

v=39.59\ m/s

Hence, (A). The time is 5.47 sec.

(B). The speed of the rock just before it strikes the ground is 39.59 m/s.

A remote controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v= [5.00 m/s – (0.0180 m/s3)t^2 ]i+[2.00 m/s + (0.550 m/s2)t ]j .a) What are ax(t) and ay(t), the x- and y- components of cars acceleration as a function of time?
b) What are the magnitude and direction of the velocity of the car at t= 8 sec?
c) What is the magnitude and direction of cars acceleration at t=8 sec

Answers

Maybe try A for your answer

Much of our knowledge of the interior of the Earth comes from the study of planetary vibrations, which is the science of

Answers

Answer:

Seismology.

Explanation:

  • Seismology is the beach of physical science that deals with the study of vibrations that comes out from the interior of the earth onto the surface and these vibrations are in the form of seismic waves that are primary, secondary, and surface waves.
  • The science of seismology tells about the magnitude and intensity of these waves that lead to planetary vibrations. These waves trigger earthquakes, floods, and even landslides.

Define the term energy density of a body under strain​

Answers

Answer:

Please mark as Brainliest!!

Explanation:

Strain energy is defined as the energy stored in a body due to deformation. The strain energy per unit volume is known as strain energy density and the area under the stress-strain curve towards the point of deformation. When the applied force is released, the whole system returns to its original shape.