To solve this problem, it is necessary to apply the concepts related to the conservation of momentum, the kinematic equations for the description of linear motion and the definition of friction force since Newton's second law.
The conservation of momentum can be expressed mathematically as
Where,
= Mass of each object
= Initial Velocity of each object
= Final velocity
Replacing we have that,
With the final speed obtained we can determine the acceleration through the linear motion kinematic equations, that is to say
Since there is no initial speed, then
Finally with the acceleration found it is possible to find the friction force from the balance of Forces, like this:
Therefore the Kinetic friction coefficient is 0.7105
0.67 m/s2
0.075 m/s2
54 m/s2
Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P =
where
f = focal length
Thus
f =
f = = + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:
where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,
Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
You should obtain e/m = 2V/(B^2)(r^2)
3. The magnetic field on the axis of a circular current loop a distance z away is given by
B = mu I R^2 / 2(R^2 + z^2)^ (3/2)
where R is the radius of the loops and I is the current. Using this result , calculate the magnetic field at the midpoint along the axis between the centers of the two current loops that make up the Helmholtz coils, in terms of their number of turns N, current I, and raidus R.Helmholtz coils are separated by a distance equal to their raidus R. You should obtain:
|B| = (4/5)^(3/2) *mu *NI/R = 9.0 x 10^-7 NI/R
where B is magnetic field in tesla, I is in current in amps, N is number of turns in each coil, and R is the radius of the coils in meters
Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B =
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B =
For N turns of coil and total field due to two coils
B =
=
= 9.0 x 10^-7 NI/R
Answer:
The underwater angles of refraction for the blue and red components of the light is 47.8° and 48.2°
Explanation:
Using the Snell's law
n1 * sin Ф1 = n2 sin Ф2
1 * sin 83 = n2 sin Ф2
Ф2 =
Red light
n2 = 1.331
Ф2 = °
Blue light
n2 = 1.340
Ф2 = °
(a) Length of the wire is 3.162 m
(b)Power delivered to the coil is 339.7 W
The electrical power is given by
P = V² / R
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 Ω
Now the resistivity of a wire is given by
ρ= RA/L
here ρ = 1.50×10⁻⁶ Ωm
so after rearranging we get:
L = RA / ρ
Now, the radius of wirer = 0.5 / 2 mm = 0.25 mm = 2.5×10⁻⁴ m
So the cross sectional area can be calculated as follows
hence,
(b)The dependency of resistance with temperature is as follows:
R = R₀[1 + αΔT]
α = for Nichrome
So the power generated is :
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
Learn more about electrical power:
Answer:
a) 3.162 m
b) 339.7 W
Explanation:
Assume ρ = 1.50*10^-6 Ωm, and
α = 4.000 10-4(°C)−1 for Nichrome
To solve this, we would use the formula
P = V² / R
So when we rearrange and make R subject of formula, we have
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 ohms
Recall the formula for resistivity of a wire
R = ρ.L/A
Again, in rearranging and making L subject of formula, we have
L = R.A / ρ
To make it uniform, we convert our radius from mm to m.
Diameter, D = 0.5 mm
Radius of wire = 0.5 / 2 mm = 0.25 mm = 0.00025 m
We then use this radius to find our area
A = πr²
A = π * 0.00025²
A = 1.96*10^-7 m²
And finally, we solve for L
L = (24.2 * 1.96*10^-7 / 1.50*10^-6) =
L = 3.162 m
(b)
Temperature coefficient of resistance.
R₁₂₀₀ = R₂₀[1 + α(1200 - 20.0) ]
R₁₂₀₀ = R₂₀[1 + α(1180) ]
R₁₂₀₀ = 24.2[ 1 + 4.*10^-4 * 1180 ]
R₁₂₀₀ = 24.2[1 + 0.472]
R₁₂₀₀ = 24.2 * 1.472
R₁₂₀₀ = 35.62 ohms
Putting this value of R in the first formula from part a, we have
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
b. 2min
c. 3min
d. 4min
e. 5min
f. 6min
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v =
let's calculate
v =
v =
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C