Answer:
76.0 years
Explanation:
Step 1: Given data
Step 2: Calculate the rate constant (k)
We will use the following expression.
k = ln 2/ t1/2 = ln 2 / 12.0 y = 0.0578 y⁻¹
Step 3: Calculate the time elapsed
For a first-reaction order, we will use the following equation.
ln [A]/[A]₀ = -k × t
t = ln [A]/[A]₀ / (-k)
t = (ln 10.0 ppbm/809 ppbm) / (-0.0578 y⁻¹)
t = 76.0 y
Answer:
We are given the formula of the compound:
C12H24O6
The empirical formula of a molecular formula is the lowest whole number ratio between the number of atoms of each element
The ratio of C to H to O in the given formula is :
12 : 24 : 6
we notice that all 3 of the numbers have 6 in common. Dividing all three of the numbers by 6, we get:
2 : 4 : 1
Hence, the ratio of Carbon to Hydrogen to Oxygen in the empirical formula of the given compound is 2 : 4 : 1 ,
Empirical Formula = C2H4O
Answer:
The empirical formula for C12 H24 O6 is C2 H4 O.
Answer:-
H+ + OH- --> H2O
Explanation:-
The chemical equation is NaOH + HNO3 --> NaNO3 + H2O
Now for the ionic compounds
HNO3 --> H+ + NO3 -
NaOH--> Na+ + OH-
NaNO3 --> Na+ + NO3-
Water being covalent will remain as H2O,
Hence
HNO3 + NaOH--> NaNO3 + H2O
H+ + NO3 - + Na+ + OH- --> Na+ + No3 - + H2O.
Crossing out common terms
H+ + OH- --> H2O
Answer:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Explanation:
Hello,
In this case, since the solubility in water is related with the presence of polar bonds in the given molecules we can see that C6H12(OH)2 has the presence two O-H bonds which promote the highest solubility via hydrogen bonds as well as the C6H13OH but in a lower degree as only on O-H bond is present. Next since the bond C-Br in is slightly close to the polar bond C6H13Br rather than the C-C bonds only had by C6H14 we can infer that C6H13Br is more soluble in water than C6H14, therefore the required order is:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Whereas C6H12(OH)2 is the most soluble and C6H14 the least soluble in water.
Best regards.
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:
Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:
I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:
Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!
The pH of the solution in the titration of 30 mL of 0.030 M NH₃ with 0.025 M HCl, is:
a) pH = 10.86
b) pH = 9.66
c) pH = 9.15
d) pH = 7.70
e) pH = 5.56
f) pH = 3.43
Initially, the pH of the solution is given by the dissociation of NH₃ in water.
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻ (1)
The constant of the above reaction is:
(2)
At the equilibrium, we have:
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻ (3)
0.030 M - x x x
After solving for x and taking the positive value:
x = 7.18x10⁻⁴ = [OH⁻]
Now, we can calculate the pH of the solution as follows:
Hence, the initial pH is 10.86.
After the addition of HCl, the following reaction takes place:
NH₃ + HCl ⇄ NH₄⁺ + Cl⁻ (4)
We can calculate the pH of the solution from the equilibrium reaction (3).
(5)
The number of moles of NH₃ (nb) and NH₄⁺ (na) are given by:
(6)
(7)
The concentrations are given by:
(8)
(9)
After entering the values of Ca and Cb into equation (5) and solving for x, we have:
x = 4.54x10⁻⁵ = [OH⁻]
Then, the pH is:
Hence, the pH is 9.66.
We can find the pH of the solution from the reaction of equilibrium (3).
The concentrations are (eq 8 and 9):
After solving the equation (5) for x, we have:
x = 1.40x10⁻⁵ = [OH⁻]
Then, the pH is:
So, the pH is 9.15.
We can find the pH of the solution from reaction (3).
After solving the equation (5) for x, we have:
x = 5.013x10⁻⁷ = [OH⁻]
Then, the pH is:
So, the pH is 7.70.
Since all the NH₃ reacts with the HCl added, the pH of the solution is given by the dissociation reaction of the NH₄⁺ produced in water.
At the equilibrium, we have:
NH₄⁺ + H₂O ⇄ NH₃ + H₃O⁺
Ca - x x x
(10)
We can find the acid constant as follows:
Where Kw is the constant of water = 10⁻¹⁴
The concentration of NH₄⁺ is:
After solving the equation (10) for x, we have:
x = 2.78x10⁻⁶ = [H₃O⁺]
Then, the pH is:
Hence, the pH is 5.56.
Now, the pH is given by the concentration of HCl that remain in solution after reacting with NH₃ (HCl is in excess).
Therefore, the pH is 3.43.
Find more about pH here:
I hope it helps you!
Answer:
a)10.87
b)9.66
c)9.15
d)7.71
e) 5.56
f) 3.43
Explanation:
tep 1: Data given
Volume of 0.030 M NH3 solution = 30 mL = 0.030 L
Molarity of the HCl solution = 0.025 M
Step 2: Adding 0 mL of HCl
The reaction: NH3 + H2O ⇔ NH4+ + OH-
The initial concentration:
[NH3] = 0.030M [NH4+] = 0M [OH-] = OM
The concentration at the equilibrium:
[NH3] = 0.030 - XM
[NH4+] = [OH-] = XM
Kb = ([NH4+][OH-])/[NH3]
1.8*10^-5 = x² / 0.030-x
1.8*10^-5 = x² / 0.030
x = 7.35 * 10^-4 = [OH-]
pOH = -log [7.35 * 10^-4]
pOH = 3.13
pH = 14-3.13 = 10.87
Step 3: After adding 10 mL of HCl
The reaction:
NH3 + HCl ⇔ NH4+ + Cl-
NH3 + H3O+ ⇔ NH4+ + H2O
Calculate numbers of moles:
Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles
Moles HCl = 0.025 M * 0.010 L = 0.00025 moles
Moles NH4+ = 0 moles
Number of moles at the equilibrium:
Moles NH3 = 0.0009 -0.00025 =0.00065 moles
Moles HCl = 0
Moles NH4+ = 0.00025 moles
Concentration at the equilibrium:
[NH3]= 0.00065 moles / 0.040 L = 0.01625M
[NH4+] = 0.00625 M
pOH = pKb + log [NH4+]/[NH3]
pOH = 4.75 + log (0.00625/0.01625)
pOH = 4.34
pH = 9.66
Step 3: Adding 20 mL of HCl
Calculate numbers of moles:
Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles
Moles HCl = 0.025 M * 0.020 L = 0.00050 moles
Moles NH4+ = 0 moles
Number of moles at the equilibrium:
Moles NH3 = 0.0009 -0.00050 =0.00040 moles
Moles HCl = 0
Moles NH4+ = 0.00050 moles
Concentration at the equilibrium:
[NH3]= 0.00040 moles / 0.050 L = 0.008M
[NH4+] = 0.01 M
pOH = pKb + log [NH4+]/[NH3]
pOH = 4.75 + log (0.01/0.008)
pOH = 4.85
pH = 14 - 4.85 = 9.15
Step 4: Adding 35 mL of HCl
Calculate numbers of moles:
Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles
Moles HCl = 0.025 M * 0.035 L = 0.000875 moles
Moles NH4+ = 0 moles
Number of moles at the equilibrium:
Moles NH3 = 0.0009 -0.000875 =0.000025 moles
Moles HCl = 0
Moles NH4+ = 0.000875 moles
Concentration at the equilibrium:
[NH3]= 0.000025 moles / 0.065 L = 3.85*10^-4M
[NH4+] = 0.000875 M / 0.065 L = 0.0135 M
pOH = pKb + log [NH4+]/[NH3]
pOH = 4.75 + log (0.0135/3.85*10^-4)
pOH = 6.29
pH = 14 - 6.29 = 7.71
Step 5: adding 36 mL HCl
Calculate numbers of moles:
Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles
Moles HCl = 0.025 M * 0.036 L = 0.0009 moles
Moles NH4+ = 0 moles
Number of moles at the equilibrium:
Moles NH3 = 0.0009 -0.0009 =0 moles
Moles HCl = 0
Moles NH4+ = 0.0009 moles
[NH4+] = 0.0009 moles / 0.066 L = 0.0136 M
Kw = Ka * Kb
Ka = 10^-14 / 1.8*10^-5
Ka = 5.6 * 10^-10
Ka = [NH3][H3O+] / [NH4+]
Ka =5.6 * 10^-10 = x² / 0.0136
x = 2.76 * 10^-6 = [H3O+]
pH = -log(2.76 * 10^-6)
pH = 5.56
Step 6: Adding 37 mL of HCl
Calculate numbers of moles:
Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles
Moles HCl = 0.025 M * 0.037 L = 0.000925 moles
Moles NH4+ = 0 moles
Number of moles at the equilibrium:
Moles NH3 = 0.0009 -0.000925 =0 moles
Moles HCl = 0.000025 moles
Concentration of HCl = 0.000025 moles / 0.067 L = 3.73 * 10^-4 M
pH = -log 3.73*10^-4= 3.43
Answer:
Explanation:
When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom. When an electron moves from a higher to a lower energy level, energy is released and photon is emitted.
this emitted photon is depicted as a small wave-packet being expelled by the atom in a well-defined direction.