9.6 grams of H₂ can be formed from 54.6 grams of NH₃ in the following reaction: 2NH₃(g) → 3H₂(g) + N₂(g).
Learn more at: brainly.com/question/8732513?referrer=searchResults
Answer : The mass of is, 9.64 grams.
Explanation : Given,
Mass of = 54.6 g
Molar mass of = 17 g/mol
Molar mass of = 2 g/mol
First we have to calculate the moles of .
Now we have to calculate the moles of
The balanced chemical equation is:
From the balanced reaction we conclude that
As, 2 mole of react to give 3 moles of
So, 3.21 mole of react to give
mole of
Now we have to calculate the mass of
Therefore, the mass of is, 9.64 grams.
Answer:
compaction and cementation
Explanation:
sedimentary rock is layered rock, in order to become sedimentary it most be compacted to form layers and cemented to become hard. This is what i think. Hope i can help :)
Question 3 options:
34.05 amu
31.03 amu
30.02 amu
15.01 amu
Answer: 34.05
Explanation:
2N and 6H = abt 34
Answer:
Kc = [B₃]²/[A₂]³ = 0.40
Explanation:
3A₂ ⇄ 2B₃
Given at equilibrium => [A₂] =2.5 and [B₃] = 2.5
Kc = [B₃]²/[A₂]³ = (2.5)²/(2.5)³ = (2.5)⁻¹ = 0.40
b) Compound
c) Heterogeneous mixture
d) Homogeneous mixture
An alloy, a metallic substance composed of two or more elements, as either a compound or a solution is a homogeneous mixture. The correct option is d.
An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of metal in the resulting material, such as electrical conductivity, ductility, opacity, and lustre, but may have properties that differ from those of pure metals, such as increased strength or hardness.
In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength. Alloys are defined by a metallic bonding character. The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies.
Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy.
Learn more about alloy, here:
#SPJ6
Answer:
An alloy is a homogeneous mixture
Explanation:
D
The total mass of the solution of lithiumnitrate solution has been 99.7 grams.
Density can be defined as the mass of the solute per unit volume. The density can be expressed as g/ml or kg/L.
The mass of given Lithium nitrate = 2.5 grams.
The mass of water can be given as:
Density =
Volume of water = 97.2 ml.
The total mass of solution:
Mass of water = Density Volume
Mass of water = 1 97.2 grams
Mass of water = 97.2 grams
The total mass = Mass of lithium nitrate + mass of water
= 2.5 + 97.2 grams
= 99.7 grams.
The total mass of the solution of lithiumnitrate solution has been 99.7 grams.
For more information about density, refer to the link:
Answer:
The total mass of the solution = 99.7 g
Note: The question is incomplete. The complete question is given below:
A "coffee-cup" calorimetry experiment is run for the dissolution of 2.5 g of lithium nitrate placed into 97.2 mL of water. The temperature of the solution is initially at 23.5oC. After the reaction takes place, the temperature of the solution is 28.3 oC.
1. Using a density of 1.0 g/mL for the water added and adding in the mass of the lithium nitrate, what is the total mass of the solution and solid?
Explanation:
mass = density * volume
density of water = 1.0 g/mL; volume of water = 97.2 mL
mass of water = 1.0 g/L * 97.2 mL
mass of water = 97.2 g
mass of lithium nitrate = 2.5 g
A solution is made by dissolving a solute (usually solid) in a solvent (usually a liquid). The solute in this reaction is lithium nitrate and the solvent is water.
Total mass of solution = mass of water + mass of lithium nitrate
Total mass of solution = 97.2 g + 2.5 g = 99.7 g
Therefore, total mass of the solution = 99.7 g