how does the presence of a strong electrolyte in solution affect the colligative properties of a solution when compared to the same number of moles of a nonelectrolyte solute?

Answers

Answer 1
Answer:

Answer:

  • lowered vapor pressure
  • higher boiling point

Explanation:

The colligative properties of a given solution can be defined as the properties of that solution that are dependent on the concentration of the molecules or ions of the solute in the solution, and not on the type or identity of that solute. Examples include:

1. vapor pressure lowering

2. boiling point elevation

3. freezing point depression

4. Osmotic pressure

In this case, vapor pressure would be lowered because with an electrolyte introduced into a solution, the number of solute particles would be larger because the solute particles dissociate into ions, thereby competing with the solvent molecules at the surface of the solution, which in turn reduces the rate at which the solvent evaporates and condenses. Vapor pressure is lower compared to a solution with the same number of moles of  nonelectrolyte solute.

The higher the number of ions in the solution, the greater the colligative properties of the solution will be impacted.

Answer 2
Answer:

Final answer:

The presence of a strong electrolyte in solution affects the colligative properties differently than a non-electrolyte solute. Strong electrolytes dissociate into ions, increasing the number of particles in solution. This affects colligative properties such as vapor pressure, boiling point elevation, freezing point depression, and osmotic pressure.

Explanation:

The presence of a strong electrolyte in solution affects the colligative properties differently than the same number of moles of a non-electrolyte solute. This is because strong electrolytes dissociate into ions when dissolved in solution, while non-electrolytes do not. The dissociation of strong electrolytes increases the total number of particles in solution, which affects colligative properties such as vapor pressure, boiling point elevation, freezing point depression, and osmotic pressure.

For example, let's compare a solution of 1 mole of sodium chloride (NaCl) to a solution of 1 mole of sucrose (C12H22O11). The sodium chloride will dissociate into Na+ and Cl- ions, which means there are now 2 particles in solution (1 Na+ and 1 Cl-) instead of just 1 molecule of sucrose. This higher particle concentration will result in a greater depression of the freezing point and elevation of the boiling point compared to the sucrose solution.

In summary, the presence of a strong electrolyte increases the number of particles in solution, leading to greater deviations in colligative properties compared to the same number of moles of a non-electrolyte solute.

Learn more about Colligative properties here:

brainly.com/question/34190054

#SPJ3


Related Questions

What effect does salt have on most metals?
What is the daughter nucleus produced when 63 Zn undergoes electron capture? Replace each question mark with the appropriate integer or symbol.
Professionalism and why there is a distinction between the healthcare community and public
Write a net ionic equation for the reaction that occurs when excess hydrochloric acid (aq) and potassium sulfite (aq) are combined. Note: Sulfites follow the same solubility trends as sulfates.
At 25.0 ⁰C the henry's law constant for hydrogen sulfide(H2S) gas in water is 0.087 M/atm. Caculate the mass in grams of H2S gas that can be dissolved in 400.0 ml of water at 25.00 C and a H2S partial pressure of 2.42atm.

When radioactive uranium decays to produce thorium, it also emits a particle. As seen in the balanced nuclear equation, this particle can BEST be described asA) a helium atom.
B) an alpha particle or a helium atom.
C) a beta particle or a hydrogen nucleus.
D) an alpha particle or a helium nucleus.

Answers

The radioactive uranium decays to produce thorium and it emits an alpha particle or helium atom. Thus, option A is correct.

What is radioactive decay?

Unstable heavy isotopes of elements undergo nuclear decay to produce stable atoms by the emission of charged particle such as alpha or beta particles.

Based on the emitted particle, there are two types of decay process namely alpha decay and beta decay. In alpha decay atoms emits alpha particles which are helium nuclei and the atom losses its mass number by 4 units and atomic number by two units,

In beta decay, electrons are emitted by the atom, where no change occurs in mass number and atomic number increases by one unit. Uranium undergo alpha decay by emitting alpha particle or helium nuclei.

To find more on alpha decay, refer here:

brainly.com/question/27870937

#SPJ6

You’re answer would be D love!

What volume of 0.335 molar hydrochloricacid solution would be required to neutral-
ize completely 39 mL of 0.137 molar sodium
hydroxide solution?
Answer in units of mL.

Answers

The volume of 0.335 molar hydrochloric acid solution would be required to neutralize completely 39 mL of 0.137 molar sodium hydroxide solution is 15.95mL.

How to calculate volume?

The volume of a substance in a neutralization reaction can be calculated using the following formula;

CaVa = CbVb

Where;

  • Ca = concentration of acid
  • Va = volume of acid
  • Cb = concentration of base
  • Vb = volume of base

According to this question, 0.335 molar hydrochloric acid solution would be required to neutralize completely 39 mL of 0.137 molar sodium hydroxide solution.

0.335 × Va = 39 × 0.137

0.335Va = 5.343

Va = 15.95mL

Learn more about volume at: brainly.com/question/15195026

#SPJ1

Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 23000.

Answers

Answer :

(a) The repeat unit is, styrene

(b) The number-average molecular weight is, 2392000 g/mol

Explanation :

First we have to calculate the repeat unit molecular weight of polystyrene.

As, the repeat unit is, styrene having chemical formula C_8H_8

Molecular weight of repeat unit = 8 × C + 8 × H

Molecular weight of repeat unit = 8 × 12 g/mol + 8 × 1 g/mol

Molecular weight of repeat unit = 104 g/mol

Now we have to calculate the number-average molecular weight.

Number-average molecular weight = Average repeat molecular weight × Degree of polymerization

Number-average molecular weight = (104 g/mol) × (23000)

Number-average molecular weight = 2392000 g/mol

Thus, the number-average molecular weight is, 2392000 g/mol

Final answer:

The repeat unit molecular weight of polystyrene is 104.15 g/mol. The average molecular weight of polystyrene with a polymerization degree of 23000 is approximately 2,395,450 g/mol.

Explanation:

To answer this question, we first need to understand that the repeating unit in polystyrene is the styrene monomer, which is C8H8. The molecular weight of this unit can be calculated by adding up the atomic weights of all the atoms in the monomer. The atomic weights of carbon (C), hydrogen (H), and styrene-based on the periodic table are approximately 12.01 amu, 1.01 amu, and 104.15 g/mol respectively. This gives a total of 104.15 g/mol for the repeat unit molecular weight of polystyrene.

Given that the degree of polymerization is 23000, we can calculate the number-average molecular weight by multiplying the repeat unit molecular weight (104.15 g/mol) by the degree of polymerization (23000). This gives a total of approximately 2,395,450 g/mol for the number-average molecular weight.

Learn more about Molecular Weight here:

brainly.com/question/34441475

#SPJ3

Be sure to answer all parts. (a) How many atoms are directly bonded to the central atom in a trigonal planar molecule?

i. two
ii. three
iii. six
iv. eight

(b) How many atoms are directly bonded to the central atom in a trigonal bipyramidal molecule?

i. three
ii. four
iii. five
iv. six

(c) How many atoms are directly bonded to the central atom in an octahedral molecule?

i. three
ii. four
iii. six
iv. eight

Answers

Answer:

a) ii

b)iii

c)iii

Explanation:

three atoms directly bonded then only it is possible to achieve trigonal planar

trigonal bipyramidal means five atoms should attach to central atom

for octahedral six atoms must directly connected to central atom

What volume of a solution is needed to dissolve 1.0 mol of KOH to make a solution whose pH is 13.55? A. 2.82 L
B. 12.43 L
C. 4.77 L
D. 3.35 L

Answers

Answer:

Option A. 2.82 L

Explanation:

Step 1:

Data obtained from the question.

pH = 13.55

Step 2:

Determination of the pOH of the solution.. This is illustrated below:

pH + pOH = 14

pH = 13.55

13.55 + pOH = 14

Collect like terms

pOH = 14 - 13.55

pOH = 0.45

Step 3:

Determination of the concentration of the OH ion.

This is illustrated below:

pOH = - Log [OH-]

pOH = 0.45

0.45 = - Log [OH-]

- 0.45 = Log [OH-]

[OH-] = antilog (- 0.45)

[OH-] = 0.355 M

Step 4:

Determination of the molarity of KOH. This is illustrated below:

First, we'll write the dissociation equation of KOH as follow:

KOH —> K+(aq) + OH-(aq)

From the balanced equation above,

1 mole of KOH produced 1 mole of OH-.

Therefore, 0.355 M of KOH will definitely produce 0.355 M of OH-.

The molarity of KOH is 0.355 M

Step 5:

Determination of the volume of the solution needed to dissolve 1 mole of KOH. This is illustrated below:

Mole of KOH = 1 mole

Molarity of KOH = 0.355 M

Volume =?

Molarity = mole /Volume

Volume = mole /Molarity

Volume = 1/0.355 M

Volume = 2.82L

The density of an element is 11.3 g/cm'. What is its density in kg/mº? ​

Answers

The density of the element in grams per cubic centimeter can be rewritten in kilograms per cubic meter as 11,300 kg/m³

What is the density of the element in kilograms per cubic meter?

Given the parameter:

The density of an element is 11.3 g/cm³

To convert the density from grams per cubic centimeter to kilograms per cubic meter, we can use the following conversion factors:

1 gram = 0.001 kilograms

1 cm³ = 1000000m³

Density in kg/m³ = Density in g/cm³ × (0.001 kg/g) × ( 1000000 m³/cm³)

Density in kg/m³ = 1000

Now, given the density of the element as 11.3 g/cm³:

Density in kg/m³ = 11.3 × 1000

Density in kg/m³ = 11,300 kg/m³

Therefore, the density of the element is approximately 11,300 kg/m³.

Learn more about density here: brainly.com/question/952755

#SPJ3

Answer:

11.3 g/cm³ = 11.3x100x100x100/ 1000 = 11300kg/m³

Explanation: