A rocket with a mass of 62,000 kg (including fuel) is burning fuel at the rate of 150 kg/s and the speed of the exhaust gases is 6,000 m/s. If the rocket is fired vertically upward from the surface of the Earth, determine its height after 744 kg of its total fuel load has been consumed. Since the mass of fuel consumed is small compared to the total mass of the rocket, you can consider the mass of the rocket to be constant for the time interval of interest.

Answers

Answer 1
Answer:

Answer:

h≅ 58 m

Explanation:

GIVEN:

mass of rocket M= 62,000 kg

fuel consumption rate =  150 kg/s

velocity of exhaust gases v= 6000 m/s

Now thrust = rate of fuel consumption×velocity of exhaust gases

=6000 × 150 = 900000 N

now to need calculate time t = amount of fuel consumed÷ rate

= 744/150= 4.96 sec

applying newton's law

M×a= thrust - Mg

62000 a=900000- 62000×9.8

acceleration a= 4.71 m/s^2

its height after 744 kg of its total fuel load has been consumed

h= (1)/(2)at^2

h= (1)/(2)4.71*4.96^2

h= 58.012 m

h≅ 58 m


Related Questions

The _______ principle encourages us to resolve a set of stimuli, such as trees across a ridgeline, into smoothly flowing patternsA.) depth perception. B.) perception. C.) similarity. D.) continuity.
A current cannot produce a magnetic field. *True or false
As a prank, your friends have kidnapped you in your sleep, and transported you out onto the ice covering a local pond. Since you're an engineer, the first thing you do when you wake up is drill a small hole in the ice and estimate the ice to be 6.7cm thick and the distance to the closest shore to be 30.5 m. The ice is so slippery (i.e. frictionless) that you cannot seem to get yourself moving. You realize that you can use Newton's third law to your advantage, and choose to throw the heaviest thing you have, one boot, in order to get yourself moving. Take your weight to be 588 N. (Lucky for you that, as an engineer, you sleep with your knife in your pocket and your boots on.)1)(a) What direction should you throw your boot so that you will most quickly reach the shore? away from the closest shore perpendicular to the closest shore straight up in the air at your friend standing on the closest shore2)(b) If you throw your 1.08-kg boot with an average force of 391 N, and the throw takes 0.576 s (the time interval over which you apply the force), what is the magnitude of the force that the boot exerts on you? (Assume constant acceleration.)391 N 3)(c) How long does it take you to reach shore, including the short time in which you were throwing the boot?Just number 3
When UV light of wavelength 248 nm is shone on aluminum metal, electrons are ejected withmaximum kinetic energy 0.92 eV. What maximum wavelength of light could be used to ejectelectrons from aluminum
Which of the following statements are true?A. The decrease in the amplitude of an oscillation caused by dissipative forces is called damping. B. The increase in amplitude of an oscillation by a driving force is called forced oscillation. C. In a mechanical system, the amplitude of an oscillation diminishes with time unless the lost mechanical energy is replaced. D. An oscillation that is maintained by a driving force is called forced oscillation.

(10 points) A spring with a 7-kg mass and a damping constant 12 can be held stretched 1 meters beyond its natural length by a force of 4 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released with zero velocity. In the notation of the text, what is the value c2−4mk? m2kg2/sec2 Find the position of the mass, in meters, after t seconds. Your answer should be a function of the variable t of the form c1eαt+c2eβt where α= (the larger of the two) β=

Answers

Answer:

......................

What force causes oppositely charged particles to attract each other? A. Magnetic force B. Compression
C. Electrical Force D. Gravity

Answers

Answer:

It is electrical force

Explanation:

i got it wrong on A P E X  with magnetic hope this helps!

Answer:

The electromagnetic force.

Neon signs require about 12,000 V for their operation. Consider a neon-sign transformer that operates off 120- V lines. How many more turns should be on the secondary compared with the primary?

Answers

I can't give you the actual number of turns, because it's the RATIO
that counts. 

However many turns the primary has, the secondary should have
about TEN TIMES that number.  Then the transformer will multiply
the primary voltage by 10 ... 120 volts of AC at the primary will
become 1,200 volts of AC at the secondary.

Note that it HAS TObe AC.  If the transformer is supplied with DC,
then 120 volts at the primary becomes zero volts at the secondary
and a big cloud of stinky smoke in the room.

The concentration of Biochemical Oxygen Demand (BOD) in a river just downstream of a wastewater treatment plant’s effluent pipe is 75 mg/L. If the BOD is destroyed through a first-order reaction with a rate constant equal to 0.05/day, what is the BOD concentration 50 km downstream? The velocity of the river is 15 km/day.

Answers

Answer:

The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L

Explanation:

Let the initial concentration of the BOD = C₀

Concentration of BOD at any time or point = C

dC/dt = - KC

∫ dC/C = -k ∫ dt

Integrating the left hand side from C₀ to C and the right hand side from 0 to t

In (C/C₀) = -kt + b (b = constant of integration)

At t = 0, C = C₀

In 1 = 0 + b

b = 0

In (C/C₀) = - kt

(C/C₀) = e⁻ᵏᵗ

C = C₀ e⁻ᵏᵗ

C₀ = 75 mg/L

k = 0.05 /day

C = 75 e⁻⁰•⁰⁵ᵗ

So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day

We calculate how many days it takes the river to reach 50 km downstream

Velocity = (displacement/time)

15 = 50/t

t = 50/15 = 3.3333 days

So, we need the C that corresponds to t = 3.3333 days

C = 75 e⁻⁰•⁰⁵ᵗ

0.05 t = 0.05 × 3.333 = 0.167

C = 75 e⁻⁰•¹⁶⁷

C = 63.5 mg/L

Final answer:

The BOD concentration 50 km downstream from the wastewater treatment plant is approximately 15.865 mg/L.

Explanation:

To calculate the BOD concentration 50 km downstream, we need to consider the rate of dilution due to the flow of the river and the first-order reaction that destroys BOD. The concentration of BOD downstream can be calculated using the equation C2 = C1 * exp(-k * d/v), where C1 is the initial concentration, k is the rate constant, d is the distance, and v is the velocity of the river.

Plugging in the given values, we have C2 = 75 * exp(-0.05 * 50/15), which gives us a BOD concentration of approximately 15.865 mg/L 50 km downstream from the wastewater treatment plant.

Learn more about downstream here:

brainly.com/question/35166255

#SPJ3

How does the mass of an object affect its motion through the air?

Answers

The motion of an object through the air does not affect by its mass. The rate of fall of objects does not depend upon the mass.

What are free fall and air resistance?

Free fall is a motion of a body in which gravity is the only force acting upon it. An object moving upwards might not be considered to be falling. But if the object is under the effect of the force of gravity, it is said to be in free fall.

Free fall is a type of motion in which the force acting upon an object is only gravity. Objects are not encountering a significant force of airresistance as they are only falling under the sole influence of gravity. All objects under such conditions will fall with the same rate of acceleration, regardless of their masses.

As an object falls through the air, have gone through some degree of air resistance. Air resistance is the collisions of the object's leading surface with molecules present in the air. The two most common factors that have a direct effect on the amount of air resistance are the cross-sectional area of the object and the speed of the object.

Learn more about free-fall motion, here:

brainly.com/question/13297394

#SPJ2

Mass does not affect the speed of falling objects assuming there is only gravity acting on it. For example Both Bullets will strike the ground at the same time. The horizontal force applied does not affect the downward motion of the bullets — only gravity and friction (air resistance), which is the same for both bullets
(Sorry if u don’t get what I mean)

The engine of a model airplane must both spin a propeller and push air backward to propel the airplane forward. Model the propeller as three 0.30-m-long thin rods of mass 0.040 kg each, with the rotation axis at one end.What is the moment of inertia of the propeller?
How much energy is required to rotate the propeller at 5800 rpm? Ignore the energy required to push the air.

Answers

The moment of inertia of the propeller is 0.0036 kgm² and the energy required is 663.21 J

Energy required for propeller:

Given that the mass of the propellers is m = 0.040kg,

and their length is L = 0.30m

The moment of inertia of a rod with the rotation axis at one end is given by :

I = (1)/(3)m L^2

so for 3 propellers:

I=3*(1)/(3)*(0.04)*(0.3)^2

I = 0.04 × 0.09

I = 0.0036 kgm²

Now, the frequency is given f = 5800 rpm

so anguar speed, ω = 5800×(2π/60)

ω = 607 rad/s

Energy required:

E = ¹/₂Iω²

E = 0.5 × 0.0036 × (607)² J

E = 663.21 J

Learn more about moment of inertia:

brainly.com/question/15248039?referrer=searchResults

Solution :

Given :

Length of the propeller rods, L =0.30 m

Mass of each, M = 0.040 kg

Moment of inertia of one propeller rod is given by  

$I=(1)/(3)* M * L^2$

Therefore, total moment of inertia is

$I=3 * (1)/(3)* M * L^2$

$I=M* L^2$

$I=0.04* (0.3)^2$

  $0.0036 \ kg \ m^2$

Now energy required is given by

$E=(1)/(2)* I * \omega^2 $

where, angular speed, ω = 5800 rpm

$\omega = 5800 * (2 \pi)/(60) $

 = 607.4 rad/s

Therefore energy,

$E=(1)/(2)* 0.0036 * (607.4)^2 $

   = 664.1 J