The Golden Gate Bridge in San Francisco has a main span of length 1.28 km, one of the longest in the world. Imagine that a steel wire with this length and a cross-sectional area of 3.10 ✕ 10^−6 m^2 is laid on the bridge deck with its ends attached to the towers of the bridge, on a summer day when the temperature of the wire is 43.0°C. When winter arrives, the towers stay the same distance apart and the bridge deck keeps the same shape as its expansion joints open. When the temperature drops to −10.0°C, what is the tension in the wire? Take Young's modulus for steel to be 20.0 ✕ 10^10 N/m^2. (Assume the coefficient of thermal expansion of steel is 11 ✕ 10−6 (°C)−1.)

Answers

Answer 1
Answer:

Answer:

361.46 N

Explanation:

\alpha = Coefficient of thermal expansion = 11* 10^(-6)\ /^(\circ)C

Y = Young's modulus for steel = 20* 10^(10)\ Pa

A = Area = 3.1* 10^(-6)\ m^2

L_0 = Original length = 1.28 km

\Delta T = Change in temperature = 45-(-10)

Length contraction is given by

\Delta L=\alpha L_0\Delta T

Also,

\Delta L=(L_0T)/(YA)

\alpha L_0\Delta T=(L_0T)/(YA)\n\Rightarrow T=\alpha \Delta TYA\n\Rightarrow T=11* 10^(-6)* (43-(-10))* 20* 10^(10) * 3.1* 10^(-6)\n\Rightarrow T=361.46\ N

The tension in the wire is 361.46 N


Related Questions

How does simple machines make work easier?
Define reflection of sound?​
A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle with a constant angular speed of 120 rev/min. The cross-sectional area of thewire is 0.014 cm2. Calculate the elongation of the wire when the mass is a) at its lowest point of the path and b) at the highest point of its path
The pressure in a section of horizontal pipe with a diameter of 2.5 cm is 139 kPa. Water ï¬ows through the pipe at 2.9 L/s. If the pressure at a certain point is to be reduced to 101 kPa by constricting a section of the pipe, what should be the diameter of the constricted section? The acceleration of gravity is 9.81 m/s2 . Assume laminar nonviscous ï¬ow.
Every few years, winds in Boulder, Colorado, attain sustained speeds of 45.0 m/s (about 100 mi/h) when the jet stream descends during early spring. show answer No Attempt Approximately what is the force due to the Bernoulli effect on a roof having an area of 205 m2? Typical air density in Boulder is 1.14 kg/m3 , and the corresponding atmospheric pressure is 8.89 × 104 N/m2 . (Bernoulli’s principle assumes a laminar flow. Using the principle here produces only an approximate result, because there is significant turbulence.)

Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.

Answers

Answer:

115 ⁰C

Explanation:

Step 1: The heat needed to melt the solid at its melting point will come from the warmer water sample. This implies

q_(1) +q_(2) =-q_(3) -----eqution 1

where,

q_(1) is the heat absorbed by the solid at 0⁰C

q_(2) is the heat absorbed by the liquid at 0⁰C

q_(3) the heat lost by the warmer water sample

Important equations to be used in solving this problem

q=m *c*\delta {T}, where -----equation 2

q is heat absorbed/lost

m is mass of the sample

c is specific heat of water, = 4.18 J/0⁰C

\delta {T} is change in temperature

Again,

q=n*\delta {_f_u_s} -------equation 3

where,

q is heat absorbed

n is the number of moles of water

tex]\delta {_f_u_s}[/tex] is the molar heat of fusion of water, = 6.01 kJ/mol

Step 2: calculate how many moles of water you have in the 100.0-g sample

=237g *(1 mole H_(2) O)/(18g) = 13.167 moles of H_(2)O

Step 3: calculate how much heat is needed to allow the sample to go from solid at 218⁰C to liquid at 0⁰C

q_(1) = 13.167 moles *6.01(KJ)/(mole) = 79.13KJ

This means that equation (1) becomes

79.13 KJ + q_(2) = -q_(3)

Step 4: calculate the final temperature of the water

79.13KJ+M_(sample) *C*\delta {T_(sample)} =-M_(water) *C*\delta {T_(water)

Substitute in the values; we will have,

79.13KJ + 237*4.18(J)/(g^(o)C)*(T_(f)-218}) = -350*4.18(J)/(g^(o)C)*(T_(f)-100})

79.13 kJ + 990.66J* (T_(f)-218}) = -1463J*(T_(f)-100})

Convert the joules to kilo-joules to get

79.13 kJ + 0.99066KJ* (T_(f)-218}) = -1.463KJ*(T_(f)-100})

79.13 + 0.99066T_(f) -215.96388= -1.463T_(f)+146.3

collect like terms,

2.45366T_(f) = 283.133

T_(f) = = 115.4 ⁰C

Approximately the final temperature of the mixture is 115 ⁰C

How many joules of work are done on an object when a force of 10 N pushes it 5 m?A) 2 J
B) 5 J
C) 50 J
D) 1 J
E) 10 J

Answers

Answer:

option C

Explanation:

given,                            

Force on the object = 10 N

distance of push = 5 m

Work done = ?              

we know,              

work done is equal to Force into displacement.

W = F . s            

W = 10 x 5              

W = 50 J                

Work done by the object when 10 N force is applied is equal to 50 J

Hence, the correct answer is option C

Final answer:

The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.

Explanation:

The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.

Therefore, the correct answer is 50 J (C).

Learn more about Work here:

brainly.com/question/31965083

#SPJ6

If gear a rotates with a constant angular acceleration of aa = 90 rad>s2, starting from rest, determine the time required for gear d to attain an angular velocity of 600 rpm. Also, find the number of revolutions of gear d to attain this angular velocity. Gears a, b, c, and d have radii of 15 mm, 50 mm, 25 mm, and 75 mm, respectively.

Answers

solution:

Given: (let a = alpha)</p><p>aA = 90 rad/s^2</p><p>(wd) = 600 rpm = 62.831 rad/s</p><p>(w0) = 0 rpm</p><p>ra = .015 m</p><p>rb = .05 m</p><p>rc = .025 m</p><p>rd = .075</p><p>aB = aA*(ra/rb) = 90 * (.015/.05)</p><p>aB = 27 rad/s^2</p><p>aC = aB, Therefore aC = 27 rad/s^2</p><p>aD = aC*(rc/rb) = 27 * (.025/.075)</p><p>aD = 9 rad/s^2

What is the frequency of a photon that has the same momentum as a neutron moving with a speed of 1.90 × 103 m/s?

Answers

The mass of a neutron is:
m=1.67 \cdot 10^(-27)kg
Since we know its speed, we can calculate the neutron's momentum:
p=mv=(1.67 \cdot 10^(-27)kg)(1.90 \cdot 10^3 m/s)=3.17 \cdot 10^(-24) kg m/s

The problem says the photon has the same momentum of the neutron, p.  The photon momentum is given by
p= (h)/(\lambda)
where h is the Planck constant, and \lambda is the photon wavelength. If we re-arrange the equation and we use the momentum we found before, we can calculate the photon's wavelength:
\lambda= (h)/(p)= (6.6 \cdot 10^(-34)Js)/(3.17 \cdot 10^(-24) kg m/s)=2.08 \cdot 10^(-10) m

And since we know the photon travels at speed of light c, we can now calculate the photon frequency:
f= (c)/(\lambda)= (3 \cdot 10^8 m/s)/(2.08 \cdot 10^(-10) m)=  1.44 \cdot 10^(18) Hz

According to American Heart Association, your target heart rate is__________. Group of answer choices

A .all of the above

B. 85% - 95% of your max heart rate

C. 20%-30% of your max heart rate

D. 50%-85% of your max heart rate

Answers

Answer:

B

Explanation:

A normal heart rate is from 85-95% the other heart rate is not normal because your heart is beating more than normal

A baseball is thrown horizontally with a velocity of 44 m/s. It travels a horizontal distance of 18m to the plate before it is caught. How long does the ball stay in the air?

A.0.41 sec
B.41 sec
C.4.1 sec
D.4 sec

Answers

A horizontal baseball pitch is launched at 44 m/s. The ball will stay for 4.1 sec (approx) in the air. Hence, option C is correct.

What is Velocity?

The rate at which an object's position changes when observed from a specific point of view and when measured against a specific unit of time is known as its velocity.

Its SI unit is represented as m/s, and it is a vector quantity, it means that it has both magnitude and direction.

According to the question, the given values are :

Initial Velocity, u = 44 m/s,

Distance travelled, s = 18 m and,

Final velocity, v = 0.

Use equation of motion :

v = u + at

0 = 44 + (-9.8)t

t = 44 / 9.8

t = 4.3 (approx)

Hence, the time for which the ball stay in the air is 4.1 sec (approx).

To get more information about velocity :

brainly.com/question/13372043

#SPJ2

Answer:

a 0.41

plug number into equation