The combustion of ethane (C2H6) produces carbon dioxide and steam. 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(g) How many moles of CO2 are produced when 5.90 mol of ethane is burned in an excess of oxygen?

Answers

Answer 1
Answer:

Final answer:

The combustion of ethane yields carbon dioxide, and with 5.90 moles of ethane being reacted, it results in the production of 11.8 moles of CO2.

Explanation:

The question pertains to the concept of stoichiometry in chemistry, and the chemical reaction in question is a combustion reaction involving ethane (C2H6). From the balanced reaction, it is evident that 2 moles of ethane (C2H6) produce 4 moles of carbon dioxide (CO2). Therefore, if we have 5.90 moles of ethane reacting, it's a straightforward calculation to determine that this would yield twice that many moles of CO2. We simply multiply the moles of ethane by the stoichiometric ratio (4/2) to get the moles of CO2.

Example Calculation: 5.90 moles of ethane x (4 moles CO2 / 2 moles C2H6) = 11.8 moles CO2

So, when 5.90 moles of ethane are burned in an excess of oxygen, 11.8 moles of CO2 are produced.

Learn more about Stoichiometry here:

brainly.com/question/34828728

#SPJ3

Answer 2
Answer:

Final answer:

In the combustion of ethane, for every mole of ethane burned, two moles of carbon dioxide are produced. Hence, when 5.90 moles of ethane are burned, 11.8 moles of carbon dioxide are produced.

Explanation:

The chemical reaction given, 2C2H6(g) + 7O2(g) ⟶ 4CO2(g) + 6H2O(g), states that 2 moles of ethane (C2H6) produce 4 moles of carbon dioxide (CO2). Thus, the mole-to-mole ratio of ethane to carbon dioxide is 2:4, or simplified, 1:2. So, for every mole of ethane burned, two moles of carbon dioxide are produced.

Given that 5.90 moles of ethane are burned, we can calculate the quantity of carbon dioxide produced by multiplying 5.90 moles by 2. Hence, when 5.90 moles of ethane are burned in an excess of oxygen, 11.8 moles of carbon dioxide are produced.

Learn more about Combustion of Ethane here:

brainly.com/question/26891476

#SPJ2


Related Questions

Which is the most stable? Carbon (C) Sodium (Na) Helium (He)
Models can have the samegeneral appearance as real-ufeobjects.True or false
Question 51 pts A breathalyzer is a device used to estimate the blood alcohol content of a suspected drunk driver by measuring the amount of alcohol in one's breath. The fuel cell breathalyzer employs the reaction below: CH3CH2OH(g)+O2(g)→HC2H3O2(g)+H2O(g) When a suspected drunk driver blows his or her breath through the fuel-cell breathalyzer, the device measures the current produced by the reaction and calculates the percent alcohol in the breath. How many moles of electrons are transferred per mole of ethanol, CH3CH2OH, in the reaction?
Consider the neutralization reaction 2HNO3(aq) + Ba(OH)2 ( aq ) ⟶ 2H2O ( l ) + Ba ( NO3)2 ( aq ). A 0.125 L sample of an unknown HNO 3 solution required 32.3 mL of 0.200 M Ba ( OH ) 2 for complete neutralization. What is the concentration of the HNO 3 solution?
How much heat energy would be needed to raise the temperature of a 223 g sample of aluminum [(C=0.895 Jig Cy from 22.5°C to 55 0°C? Η Ο Ο Ο ΟΟ 10x10) not enough information given Prov 40 25 11 Next >

Which si unit would be most appropriate for describing the lengeth of the shoe?

Answers

LOLOLOKIKIKHAbshzjbd d she zjeks e
Doeowknsnd cjxjznnzns sm

Consider the reaction at 25 °C. H2O(l) ↔ H2O(g) ΔG° = 8.6 kJ/mol Calculate the pressure of water at 25 °C (Hint: Get K eq)

Answers

Answer:

\boxed{\text{23.4 mmHg}}

Explanation:

H₂O(ℓ) ⟶ H₂O(g)

K_{\text{p}} = p_{\text{H2O}}

\text{The relationship between $\Delta G^(\circ)$ and $K_{\text{ p}}$ is}\n\Delta G^(\circ) = -RT \ln K_{\text{p}}

Data:  

T = 25 °C

ΔG° = 8.6 kJ·mol⁻¹

Calculations:

T = (25 + 273.15) K = 298.15 K

\begin{array}{rcl}8600 & = & -8.314 * 298.15 \ln K \n8600 & = & -2478.8 \ln K\n-3.47 & = & \ln K\nK&=&e^(-3.47)\n& = & 0.0311\end{array}

Standard pressure is 1 bar.

p_{\text{H2O}} = \text{0.0311 bar} * \frac{\text{750.1 mmHg}}{\text{1 bar}} = \textbf{23.4 mmHg}\n\n\text{The vapour pressure of water at $25 ^(\circ)\text{C}$ is $\boxed{\textbf{23.4 mmHg}}$}

7. What is the molar mass of each of the following elements?a) helium, He(s)
c) potassium, K(s)
b) manganese, Mn(s)
d) boron, B(s)

Answers

Answer:

The molar mass of:

Helium = 4.00 g/mol

Potassium = 39.0983 g/mol

Manganese = 54.94 g/mol.

Boron = 10.81 g / mol

Explanation:

Helium = 4.00 g/mol

Potassium = 39.0983 g/mol

Manganese = 54.94 g/mol.

Boron = 10.81 g / mol

7. A species is _ when its population has become so low that it is close to becoming extincta. Massive logging b. endangered c. pollutants d. population

pa help po,,,​

Answers

Answer:

Endangered. The meaning of endangered is when a species declines in number- this might be because they are being eaten by another animal which has a higher popupayion, or perhaps because they are being hunted by humans for their meat or fur. Neither reason might be that their food or habitat has been destroyed b humans to create land for farming or housing. one example of name endangered species is Polar Bears: they like in the Antarctic where there is no land, simply ice. Due to humans causing climate change, the world is warming up and the ice is melting. This means polar bears are dying out because it would be too tiring to swim to find ice. For the same reason, other animals are dying in the Antarctic meaning that Poplar Bears have less to eat (being at the top of the food chain -no animal eats polar bears).

Write the half-reaction for ribose conversion to CO2. Is it an oxidation- or reduction- half reaction

Answers

Answer:

5H_2O+C_5H_(10)O_5\rightarrow 5CO_2+20H^++20e^-

Explanation:

Hello.

In this case, when ribose (C₅H₁₀O₅) yields carbon dioxide (CO₂) we write:

C_5H_(10)O_5\rightarrow CO_2

Which needs to be balanced by adding water and hydrogen ions:

5H_2O+C_5H_(10)O_5\rightarrow 5CO_2+20H^++20e^-

You can also see that there are 20 transferred electrons, since the carbon atoms in the ribose have 0 as their oxidation state and the carbon atoms in the carbon dioxide have +4 as the oxidation state, thus, each carbon transfers  4 electrons, a five carbon atoms transfer 20 electrons overall.

In such a way, since the carbon is increasing its oxidation state, such half reaction is an oxidation half reaction.

Best regards.

Calculate your experimentally determined percent mass of water in Manganese(II) sulfate monohydrate. Report your result to 2 or 3 significant figures, e. g. 9.8% or 10.2%.

Answers

The mass percentage of the water in hydrated magnesium sulfate (MnSO4 . H2O) is 10.6%.

What is percentage mass?

The percentage mass is the ratio of the mass of the element or molecule in the given compound.

The percentage can be given as:

\text{Percent Mass} = \frac{\text{Mass of molecule}}{\text{total mass of compound}} * 100 \%

The mass of the water is 18.02 g/mol and the molar mass of hydrated magnesium sulfate (MnSO4 . H2O) is 169.03 g/mol.

Thus,

\text{Percent Mass} = \frac{\text{18.02}}{\text{169.03 }} * 100 \%\n\n\text{Percent Mass} = 10.6 \%}

Therefore, the mass percentage of the water in hydrated magnesium sulfate (MnSO4 . H2O) is 10.6%.

Learn more about percentage mass:

brainly.com/question/3940233

Answer:

10.6%

Explanation:

The determined percent mass of water can be calculated from the formula of the hydrate by  

dividing the mass of water in one mole of the hydrate by the molar mass of the hydrate and  

multiplying this fraction by 100.

 

Manganese(ii) sulphate monohydrate is MnSO4 . H2O

1. Calculate the formula mass. When determining the formula mass for a hydrate, the waters of  

hydration must be included.

1 Manganes  52.94 g = 63.55 g  

1 Sulphur  32.07 g =  

32.07 g 2 Hydrogen is  = 2.02 g

4 Oygen       =  

64.00 g 1 Oxygen 16.00 = 16.00 g

151.01 g/mol  18.02 g/mol

   

Formula Mass = 151.01 + (18.02) = 169.03 g/mol

2. Divide the mass of water in one mole of the hydrate by the molar mass of the hydrate and  

multiply this fraction by 100.

Percent hydration = (18.02 g /169.03 g) x (100) = 10.6%

The final result is 10.6% after the two steps calculations