Answer:
The concentration of the HNO3 solution is 0.103 M
Explanation:
Step 1: Data given
Volume of the unknow HNO3 sample = 0.125 L
Volume of 0.200 M Ba(OH)2 = 32.3 mL = 0.0323 L
Step 2: The balanced equation
2HNO3(aq) + Ba(OH)2 ( aq ) ⟶ 2H2O ( l ) + Ba( NO3)2 (aq)
Step 3:
n2*C1*V1 = n1*C2*V2
⇒ n2 = the number of moles of Ba(OH)2 = 1
⇒ C1 = the concentration of HNO3 = TO BE DETERMINED
⇒ V1 = the volume of the HNO3 solution = 0.125 L
⇒ n1 = the number of moles of HNO3 = 2
⇒ C2 = the concentration of Ba(OH)2 = 0.200 M
⇒ V2 = the volume of Ba(OH)2 = 0.0323 L
1*C1 * 0.125 L = 2*0.200M * 0.0323 L
C1 = (2*0.200*0.0323)/0.125
C1 = 0.103 M
The concentration of the HNO3 solution is 0.103 M
The stability of an atom is affected by the balance between the electrons, protons, and neutrons in an atom.
A particle less than an atom is referred to as a subatomic particle. A subatomic particle can either be an elementary particle, which is not made of other particles, or a composite particle, which is composed of other particles, according to the Standard Model of particle physics.
Particles smaller than an atom are referred to as subatomic particles. The three primary subatomic particles present in an atom are protons, neutrons, and electrons.
Learn more about sub-atomic particles at: brainly.com/question/16847839
#SPJ6
Answer:
504.57 K.
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 6.81 moles
Pressure (P) = 2.99 atm
Volume (V) = 94.35 L
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =.?
Using the ideal gas equation, the temperature of the ideal gas can be obtained as follow:
PV = nRT
2.99 × 94.35 = 6.81 × 0.0821 × T
282.1065 = 0.559101 × T
Divide both side by 0.559101
T = 282.1065 / 0.559101
T = 504.57 K.
Thus, the temperature of the ideal gas is 504.57 K.
Answer:
E = 165.75×10⁻²⁶ J
Explanation:
Given data:
Wavelength = 0.12 m
Energy of wave = ?
Solution:
Formula:
E = h c/λ
c = 3×10⁸ m/s
h = 6.63×10⁻³⁴ Js
Now we will put the values in formula.
E = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 0.12 m
E = 19.89×10⁻²⁶ J.m / 0.12 m
E = 165.75×10⁻²⁶ J
Answer:
3.6124 m/kg
Explanation:
Molality is calculated as moles of solute (mol) divided by kilogram of solvent (kg). Here, we can find these numbers by using the 35.4%, which gives us 35.4 g of H3PO4 and 100 g of solution to work with.
To go from grams to moles for the phosphoric acid, you need to find the molar mass of the compound or element and divide the grams of the compound or element by that molar mass.
Here, the molar mass for phosphoric acid is 97.9952 g/mol. The equation would look like this:
35.4 g x 1 mol / 97.9952 g = 0.3612422 mol
Next, the 100 g of solvent can easily be converted to 0.1 kg of solvent.
To find the molality, divide the moles of solute and kilograms of solution.
0.3612422 mol / 0.1 kg = 3.6124 m/kg
Answer:
They produce ions when dissolved in water.
Explanation:
Acids and bases have the characteristic in common to each other. Both of them have the property of reacting and dissolving in the water. Both acids and bases lead to the production of the ions when they are placed in a water solution. Acids produce Hydrogen ions when they are dissolved in water. Bases produce hydroxide ion when they are dissolved in water.