The block's kinetic energy is closest to 1500 Joules.
The energy is always conserved.
So that, the total kinetic energy will be sum of initial potential energy and kinetic energy during falling.
Given that, mass(m)=10kg, v=10m/s, h=10m,g=10m/s^2
K.E=(1/2)mv^2 + mgh
K.E=(1/2)*10*100 + (10*10*10)
K.E=500 + 1000=1500Joule
The block's kinetic energy is closest to 1500 Joules.
Learn more about the kinetic energy here:
Answer:
Kinetic energy = 1500 J
Explanation:
The computation of the block's kinetic energy is shown below:
As we know that
Conservation of energy is
PE_i + KE_i = PE_f + KE_f
where,
Initial Potential energy = PE_i = m gh = 10kg× 10m/s^2 × 10m = 1000 J
Initial Kinetic energy = KE_i = (0.5) m V^2 = (0.5) (10 kg) (10 m/s)^2 = 500 J
Final potential energy = PE_f = mgh = 0
As h = 0 which is at reference line
So
PE_i + KE_i = PE_f + KE_f
Now put these valeus to the above formulas
1000 J + 500 J = 0 + KE_f
After solving this
Kinetic energy = 1500 J
controlled braking
threshold braking
coasting
Answer:
Controlled braking
Explanation:
CONTROLLED BRAKING occur in a situation where a person or an individual driving a vehicle releases the brake and slowly apply smooth as well as firmly pressure on the brake without the wheels been locked which is why CONTROLLED BRAKING are often used for emergency stops by drivers reason been that it helps to reduce speed when driving as fast as possible while the driver maintain the steering control of the vehicle.
Therefore the form of braking which is used to bring a vehicle to a smooth stop by applying smooth,steady pressure to the brake is called CONTROLLED BRAKING.
The method of braking that involves applying smooth, steady pressure to the brake to bring the vehicle to a smooth stop is called controlled braking. It helps prevent skidding and provides the driver with more control over the vehicle.
The form of braking used to bring a vehicle to a smooth stop by applying smooth, steady pressure to the brake is known as controlled braking. This method of braking involves applying consistent, even pressure to the brake pedal, which allows the car to slow down gently and gradually. It helps prevent uncontrolled skidding and provides the driver with more control over the vehicle's direction and speed during the stop. Unlike other methods like trail braking, threshold braking, or coasting, controlled braking is typically the safest and most effective method for daily driving conditions.
#SPJ6
Answer:
Capacitance = ( 4π×∈×r×R ) / (R-r)
energy store = ( 4π×∈×r×R )×V² / (R-r)
Explanation:
given data
radius = r
radius = R
r < R
to find out
capacitance and how much energy store
solution
we consider here r is inner radius and R is outer radius
so now apply capacitance C formula that is
C = Q/V .................1
here Q is charge and V is voltage
we know capacitance have equal and opposite charge so
V =
here E = Q / 4π∈k²
so
V = Q / 4π∈
V = Q / 4π∈ × ( 1/r - 1/R )
V = Q(R-r) / ( 4π×∈×r×R )
so from equation 1
C = Q/V
Capacitance = ( 4π×∈×r×R ) / (R-r)
and
energy store is 1/2×C×V²
energy store = ( 4π×∈×r×R )×V² / (R-r)
Answer:
1/4F
Explanation:
We already know thatThe electrostatic force is directly proportional to the product of the charge, from Coulomb's law.
So F α Qq
But if it is now half the initial charges, then
F α (1/2)Q *(1/2)q
F α (1/4)Qq
Thus the resultant charges are each halved is (1/4) and the first initial force experienced at full charge.
Thus the answer will be 1/4F
(1) The acceleration of the car will be
(2) The time taken
(3) The time is taken by the car to slow down from 20m/s to 10m/s
(1) The acceleration of the car will be calculated as
Here
u= 14
(2) The time is taken for the same acceleration to 20
u=20
(3) The time is taken to slow down from 20m/s to 10m/s with the same acceleration
From same formula
v=10
u=20
Thus
(1) The acceleration of the car will be
(2) The time taken
(3) The time is taken by the car to slow down from 20m/s to 10m/s
To know more about the Equation of the motion follow
(a)
The car's acceleration is given by
where
v = 0 is the final velocity
u = 14 m/s is the initial velocity
t = 4 s is the time elapsed
Substituting,
where the negative sign means the car is slowing down.
(b) 5.7 s
We can use again the same equation
where in this case we have
is again the acceleration of the car
v = 0 is the final velocity
u = 20 m/s is the initial velocity
Re-arranging the equation and solving for t, we find the time the car takes to come to a stop:
(c)
As before, we can use the equation
Here we have
is again the acceleration of the car
v = 10 is the final velocity
u = 20 m/s is the initial velocity
Re-arranging the equation and solving for t, we find
Answer:
5.05 m/s
Explanation:
The distance from the bottom of his feet to his center of mass is (when is hanging at rest) is 2.1 - 1.3 = 0.8 m. Assume he keeps the posture, as soon as his feet touches the ground, his center of mass is 0.8 m above the ground. This would mean that he has traveled a distance of 2.1 - 0.8 = 1.3 m vertically. Using the law of energy conservation for potential and kinetic energy, also let the ground be ground 0 for potential energy, we have the following mechanical conservation energy:
Since he was hanging at rest, his initial kinetic energy at H = 2.1m must be 0. Let g = 9.81m/s2 and m be his mass, we can calculate for his velocity v at h = 0.8 m. First start by dividing both sides by m
Answer:
Gas mileage is 17.29
Explanation:
Given data:
The total number of the model is 35
The total size of the engine is 5 ltr
The regression model is given as
From the information given in question we have
Regression equation is : model- mpg
Therefore for engine capacity of 5 liters;
Gas mileage
Gas mileage is 17.29
Answer:16.
Explanation: