Answer:
Lever, pulley and wheel and axle are the types of machine it's grouped to
Explanation:
The wheel and axle is a simple machine that works by reducing friction in trying to move a load. This is seen in the Tyre of the bicycle
Pulley is a simple machine that creates a mechanical advantage and supports the changing of direction for a rope or cable. This is seen in the chain of the bicycle
Levers attached to the bike's pedals are pushed down to direct force into the pulley system.
Explanation:
The relation between resistance and resistivity is given by :
is resistivity of material
l is length of wire
A is area of cross section of wire
Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is
Answer:
As the mass is not written well, i will use the equation in terms of the gravitational acceleration:
The equation for the period of a satellite is:
We want to find r, so isolating r we get:
Where:
T = period.
r = radius of the satellite.
R = radius of the planet.
g = gravitational acceleration of the planet.
pi = 3.14159...
g = 78999.64 mi/h^2 (value of a table)
T = 42.391 h.
R = 3958.8 miles
We can replace those values in the equation and get:
Now this value is measured from the center of the Earth, then the altitude of the satellite measured from the surface of the Earth will be:
H = r - R = 38,339.1mi - 3958.8mi = 34,380.3 mi
Answer:
Yes, the paths of the two particles cross.
Location of path intersection = ( 1 , 2 , 3)
Explanation:
In order to find the point of intersection, we need to set both locations equal to one another. It should be noted however, that the time for each particle can vary as we are finding the point where the paths meet, not the point where the particles meet themselves.
So, we can name the time of the first particle , and the time of the second particle .
Setting the locations equal, we get the following equations to solve for and :
Equation 1
Equation 2
Equation 3
Solving these three equations simultaneously we get:
2 seconds
4 seconds
Since, we have an answer for when the trajectories cross, we know for a fact that they indeed do cross.
The point of crossing can be found by using the value of or in the location matrices. Doing this for the first particle we get:
Location of path intersection = ( -1 + 2 , 4 - 2 , -1 + 2(2) )
Location of path intersection = ( 1 , 2 , 3)
B. decreases.
C. stays the same.
D. It depends on the exact type of electromagnetic wave.
At the time when the frequency of an electromagnetic wave increases, its energy increased.
The following information should be considered:
Therefore we can conclude that At the time when the frequency of an electromagnetic wave increases, its energy increased.
Learn more: brainly.com/question/6201432
Answer:
Air pockets.
Explanation:
Air pockets in the cooling system are bubbles of air trapped within the lines (hoses and pipes) of the cooling system. This air bubbles enter the cooling system usually during the process of filling the radiator coolant fluid (usually water), or replacing the water pump or the radiator hose during repairs or servicing of the cooling system. The trapped air prevent pressure movement that is needed by the coolant to move the heat generated from the engine cylinder, resulting in heat build up. The solution is to "bleed" the engine through the radiator lid or some air release valves.
Answer:
a) 10.29° upstream
b) t=338.7s
Explanation:
If the river is 1km wide and the destination point is 0.5km away downstream, then the angle and distance the the boat has to travel is:
The realitve velocity of the boat respect to the water is:
where β is the angle it has to be pointed at.
From the relative mvement equations:
where
From this equation we get one equation per the x-axis and another for the y-axis. If we square each of them and add them together, we will get 2 equations:
Solving for V:
V = 3.3m/s and V=-1.514m/s Replacing this value into one of our previous x or y-axis equations:
The amount of time: