Given :
∅ = 60⁰
u = 4 m/s
g = 10m/s²
to find :
T = ?
Solution :
as per formula,
now put the value :
as we know
therefore,
as we solve this we get,
that's t = 0.69 sec
0.8 seconds
Explanation:
time of flight = 2u/g
u=4m/s
g=10
= 8/10
= 0.8 sec
just a trial...not sure!!!
B. A pingpong ball rolling a 2 m/s
C. A bowling ball rolling at 1m/s
D. A car rolling at 5 m/s
Answer:
A. A tractor trailer rig moving at 2 m/s
Explanation:
Inertia can be defined as the tendency of an object or a body to continue in its state of motion or remain at rest unless acted upon by an external force.
In physics, Sir Isaac Newton's first law of motion is known as law of inertia and it states that, an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
The inertia of an object such as a tractor trailer rig is greatly dependent or influenced by its mass; the higher quantity of matter in a tractor trailer rig, the greater will be its tendency to continuously remain at rest.
Hence, the object that has more inertia is a tractor trailer rig moving at 2 m/s because it has more mass than all the other objects in the category. Also, the mass of an object is directly proportional to its inertia.
Answer: hello your question is incomplete below is the complete question
Water stands at a depth H in a large open tank whose side walls are vertical . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole
answer :
At Height ( h ) from the bottom of Tank
Explanation:
Determine how far above the bottom of the tank a second hole be cut
For the second hole to have the same range as the first hole
Range of first hole = Velocity of efflux of water * time of fall of water
= √ (2gh) * √( 2g (H - h) / g)
= √ ( 4(H-h) h)
Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank
The second hole should be cut at the same height as the first hole to have the same range for the stream.
In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.
#SPJ3
Answer:
3 fans per 15 A circuit
Explanation:
From the question and the data given, the light load let fan would have been
(60 * 4)/120 = 240/120 = 2 A.
Next, we add the current of the fan motor to it, so,
2 A + 1.8 A = 3.8 A.
Since the devices are continuos duty and the circuit current must be limited to 80%, then the Breaker load max would be
0.8 * 15 A = 12 A.
Now, we can get the number if fans, which will be
12 A/ 3.8 A = 3.16 fans, or approximately, 3 fans per 15 A circuit.
The total power draw of each fan is 3.8 amperes. Thus, considering a limit of 80% usage of 15 amperes, only 3 fans can be connected to a single circuit to keep the total power draw below 12 amperes.
The question is asking how many ceiling fans, each with a certain power draw, can be connected on a single 15-ampere circuit, considering that each fan is a continuous-duty device. The power draw of each fan when the motor is operated at high speed and the light kit is fully loaded is the sum of the power draw of the motor and the light kit. As the power draw of each motor is 1.8 amperes and the light kit is 240 watts or 2 amperes (calculated using the formula Power = Voltage x Current; assuming a voltage of 120 volts), the total power draw of each fan is 3.8 amperes. Considering the limit of 80% of the continuous load, only 12 amperes (80% of 15) can be used. Thus, 3 fans can be connected to the circuit as it reaches 11.4 amperes, close enough to the 12 amperes limit.
#SPJ3
Answer:
Explanation:
given,
mass of the both ball = 5 Kg
length of rod = 2 L
where L = 0.55 m
angular speed = 45.6 rev/s
ω = 45.6 x 2 π
ω = 286.51 rad/s
v₁ = r₁ ω₁
v₁ =0.55 x 286.51 = 157.58 m/s
v₂ = r₂ ω₂
v₂ = 1.10 x 286.51 = 315.161 m/s
finding tension on the first half of the rod
r₁ = 0.55 r₂ = 2 x r₁ = 1.10
Answer:
The 1.5V battery can power the flashlight bulb drawing 0.60A for 83.33 minutes before it is depleted.
Explanation:
To determine how long a 1.5V battery can power a flashlight bulb drawing 0.60A, you can use the formula for calculating the energy (in joules) consumed by an electrical device over time:
Energy (Joules) = Power (Watts) × Time (Seconds)
In this case, the power (P) is given by the product of the voltage (V) and current (I):
Power (Watts) = Voltage (Volts) × Current (Amperes)
So, first, calculate the power consumption of the flashlight bulb:
Power (Watts) = 1.5V × 0.60A = 0.90 Watts
Now, you want to find out how long the battery can power the bulb, so rearrange the energy formula to solve for time:
Time (Seconds) = Energy (Joules) / Power (Watts)
Given that the battery stores 4.5 kJ (kilojoules), which is equivalent to 4,500 joules, and the power consumption is 0.90 watts:
Time (Seconds) = 4,500 J / 0.90 W = 5,000 seconds
Now, to express the time in more practical units, convert seconds to minutes:
Time (Minutes) = 5,000 seconds / 60 seconds/minute ≈ 83.33 minutes
So, the 1.5V battery can power the flashlight bulb drawing 0.60A for approximately 83.33 minutes before it is depleted.
Dawn is trying to figure out how much weight she can push with her strength, or what her maximum pushing force is, across the room. She could do an experiment to find out.
She must first prepare a testing space with a flat, smooth surface to reduce friction. She can then progressively add weights to a cart or other object and use all of her strength to try to push it across the room. She can determine her maximum pushing force by noting the heaviest weight she can move. For a variety of jobs, including moving furniture or participating in physical sports that call for pushing heavy things, this knowledge can be essential.
To know more about physical sports, here
#SPJ2
Answer:
Muscular strength
Explanation:
She is testing her strength while pushing the weights